scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects

TL;DR: The concept of endophytism is discussed, looking into the latest insights related to the multifarious interactions beneficial for the host plant and exploring the importance of these associations in agriculture and the environment and in other vital aspects such as human health.
Abstract: Microbial endophytes are present in all known plant species. The ability to enter and thrive in the plant tissues makes endophytes unique, showing multidimensional interactions within the host plant. Several vital activities of the host plant are known to be influenced by the presence of endophytes. They can promote plant growth, elicit defense response against pathogen attack, and can act as remediators of abiotic stresses. To date, most of the research has been done assuming that the interaction of endophytes with the host plant is similar to the plant growth-promoting (PGP) microbes present in the rhizosphere. However, a new appreciation of the difference of the rhizosphere environment from that of internal plant tissues is gaining attention. It would be interesting to explore the impact of endosymbionts on the host's gene expression, metabolism, and other physiological aspects essential in conferring resistance against biotic and abiotic stresses. A more intriguing and inexplicable issue with many endophytes that has to be critically evaluated is their ability to produce host metabolites, which can be harnessed on a large scale for potential use in diverse areas. In this review, we discuss the concept of endophytism, looking into the latest insights related to the multifarious interactions beneficial for the host plant and exploring the importance of these associations in agriculture and the environment and in other vital aspects such as human health.
Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the intrinsic mechanism to better utilize these benefits for plant growth and disease resistance and contributes new ideas to increase plant fitness and crop productivity.
Abstract: Due to increasingly limited water resources, diminishing farmland acreage, and potentially negative effects of climate change, an urgent need exists to improve agricultural productivity to feed the ever-growing population. Plants interact with microorganisms at all trophic levels, adapting growth, developmental, and defense responses within a complicated network of community members. Endophytic fungi have been widely reported for their ability to aid in the defense of their host plants. Currently, many reports focus on the application of endophytic fungi with the capability to produce valuable bioactive molecules, while others focus on endophytic fungi as biocontrol agents. Plant responses upon endophytic fungi colonization are also good for the immune system of the plant. In this paper, the possible mechanisms between endophytic fungi and their hosts were reviewed. During long-term evolution, plants have acquired numerous beneficial strategies in response to endophytic fungi colonization. The interaction of endophytic fungi with plants modulates the relationship between plants and both biotic and abiotic stresses. It has previously been reported that this endophytic relationship confers additional defensive mechanisms on the modulation of the plant immune system, as the result of the manipulation of direct antimicrobial metabolites such as alkaloids to indirect phytohormones, jasmonic acid, or salicylic acid. Furthermore, plants have evolved to cope with combinations of stresses and experiments are required to address specific questions related to these multiple stresses. This review summarizes our current understanding of the intrinsic mechanism to better utilize these benefits for plant growth and disease resistance. It contributes new ideas to increase plant fitness and crop productivity.

147 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health.

126 citations


Cites background from "Multifaceted Interactions Between E..."

  • ...The idea behind this approach is to add beneficial diversity of microbes so that it will improve plant functions and provides overall resistance to the plant against abiotic and biotic stress [68,69] as shown in Fig....

    [...]

  • ..., [62] on the basis of denaturing gradient gel electrophoresis (DGGE) revealed that the microbes like proteobacteria and fungus were most abundantly present [68]....

    [...]

Journal ArticleDOI
TL;DR: Key findings on the antibacterial potential of plant NPs are brought to the forefront for consideration in future antibiotic discovery and development efforts.
Abstract: The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.

123 citations

Journal ArticleDOI
TL;DR: The performance of endophytic fungi applied to crops as a supplement to plant genetics or soil management to alleviate salt stress in crops is described via inducing systemic resistance, increasing the levels of beneficial metabolites, activating antioxidant systems to scavenge ROS, and modulating plant growth phytohormones.
Abstract: Salinization of soil with sodium chloride ions inhibits plant functions, causing reduction of yield of crops. Salt tolerant microorganisms have been studied to enhance crop growth under salinity. This review describes the performance of endophytic fungi applied to crops as a supplement to plant genetics or soil management to alleviate salt stress in crops. This is achieved via inducing systemic resistance, increasing the levels of beneficial metabolites, activating antioxidant systems to scavenge ROS, and modulating plant growth phytohormones. Colonization by endophytic fungi improves nutrient uptake and maintains ionic homeostasis by modulating ion accumulation, thereby restricting the transport of Na+ to leaves and ensuring a low cytosolic Na+:K+ ratio in plants. Participating endophytic fungi enhance transcripts of genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. Endophytic-induced interplay of strigolactones play regulatory roles in salt tolerance by interacting with phytohormones. Future research requires further attention on the biochemical, molecular and genetic mechanisms crucial for salt stress resistance requires further attention for future research. Furthermore, to design strategies for sustained plant health with endophytic fungi, a new wave of exploration of plant-endophyte responses to combinations of stresses is mandatory.

91 citations

Journal ArticleDOI
23 Oct 2019
TL;DR: This review sought to highlight the potential use of endophytic microbial resources to achieve enhancements in agro-food system crops in a sustainable manner.
Abstract: The conventional means of achieving enhanced agricultural productivity are not ecologically balanced and sustainable. The excessive use of synthetic agrochemicals, declining soil nutrients, and water-use issues, amongst others, are threats to the ecosystem. Additionally, environmental degradation and an increasing global population that will reach 9 billion by 2030 are further considerations. These issues mean a decline in the volume of food resources available to feed the world. Therefore, sustainably increasing agricultural productivity is a necessity for restoring soil fertility, feeding the populace, and improving the ecosystem. A way to achieve this is by using eco-friendly microbial inoculants. Endophytes inhabit the tissues of plants asymptomatically without causing adverse effects. Bacterial and fungal endophytes benefit plants by promoting growth, suppressing pathogens, and improving the stress tolerance and immunity of plants. Despite this vital role played by endophytes in their interactions with host plants, there is still a paucity of relevant review data. More importantly, the prospective use of endophytes as an alternative to synthetic agrochemicals to ensure agro-ecological crop productivity has not been well reviewed in the literature. Therefore, this review sought to highlight the potential use of endophytic microbial resources to achieve enhancements in agro-food system crops in a sustainable manner.

87 citations


Cites background from "Multifaceted Interactions Between E..."

  • ...Furthermore, they have the ability to fix, solubilize, and mobilize essential elements for the plant to utilize [68,104]....

    [...]

  • ...Endophytic bacteria and fungi have shown great potential in promoting plant growth (Figure 1), in the biological control of phytopathogens, destructive pests, and insects, in inducing tolerant traits in response to abiotic stresses, and in inducing greater immune fitness in different plants [70,103,104]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Endophytic microorganisms reside in the living tissues of the host plant and do so in a variety of relationships, ranging from symbiotic to slightly pathogenic, which may produce a plethora of substances of potential use to modern medicine, agriculture, and industry.
Abstract: Endophytic microorganisms are to be found in virtually every plant on earth. These organisms reside in the living tissues of the host plant and do so in a variety of relationships, ranging from symbiotic to slightly pathogenic. Because of what appears to be their contribution to the host plant, the endophytes may produce a plethora of substances of potential use to modern medicine, agriculture, and industry. Novel antibiotics, antimycotics, immunosuppressants, and anticancer compounds are only a few examples of what has been found after the isolation, culture, purification, and characterization of some choice endophytes in the recent past. The potential prospects of finding new drugs that may be effective candidates for treating newly developing diseases in humans, plants, and animals are great.

1,997 citations

Journal ArticleDOI
TL;DR: Historically, endophytic bacteria have been thought to be weakly virulent plant pathogens but have recently been discovered to have several beneficial effects on host plants, such as plant growth promotion and increased resistance against plant pathogens and parasites.
Abstract: Endophytic bacteria are ubiquitous in most plant species, residing latently or actively colonizing plant tissues locally as well as systemically Several definitions have been proposed for endophyt

1,796 citations

Journal ArticleDOI
TL;DR: The individual steps of plant colonization are described and the known mechanisms responsible for rhizosphere and endophytic competence are surveyed to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.
Abstract: In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in supporting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be applied in agricultural production or for the phytoremediation of pollutants. However, because of their capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost importance. The majority of plant-associated bacteria derives from the soil environment. They may migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root colonizing populations. A better understanding on colonization processes has been obtained mostly by microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional genes potentially involved in colonization. In this review we describe the individual steps of plant colonization and survey the known mechanisms responsible for rhizosphere and endophytic competence. The understanding of colonization processes is important to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.

1,705 citations

Journal ArticleDOI
TL;DR: This review addresses the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Abstract: All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

1,677 citations


"Multifaceted Interactions Between E..." refers background in this paper

  • ...Hardoim et al. (2015) reported that among endophytes, genes involved in anabolic pathways are more diverse and abundant; however, catabolism-related genes, particularly those that are involved in the invasion of the host, are more prominent among phytopathogens....

    [...]

  • ...For further information on endophytic genomic markers, one can refer to works of Shidore et al. (2012), Karpinets et al. (2014), Hardoim et al. (2015), and Xu et al. (2016)....

    [...]

  • ...…component of their lifestyle and most of the modern research clearly shows that survival and health of plants are very much dependent upon Frontiers in Microbiology | www.frontiersin.org 1 November 2018 | Volume 9 | Article 2732 these microorganisms (Hardoim et al., 2015; Potshangbam et al., 2017)....

    [...]

Journal ArticleDOI
TL;DR: Molecular analysis showed that plant defense responses limit bacterial populations inside plants, and delivery of endophytes to the environment or agricultural fields should be carefully evaluated to avoid introducing pathogens.
Abstract: Recent molecular studies on endophytic bacterial diversity have revealed a large richness of species. Endophytes promote plant growth and yield, suppress pathogens, may help to remove contaminants, solubilize phosphate, or contribute assimilable nitrogen to plants. Some endophytes are seed-borne, but others have mechanisms to colonize the plants that are being studied. Bacterial mutants unable to produce secreted proteins are impaired in the colonization process. Plant genes expressed in the presence of endophytes provide clues as to the effects of endophytes in plants. Molecular analysis showed that plant defense responses limit bacterial populations inside plants. Some human pathogens, such as Salmonella spp., have been found as endophytes, and these bacteria are not removed by disinfection procedures that eliminate superficially occurring bacteria. Delivery of endo-phytes to the environment or agricultural fields should be carefully evaluated to avoid introducing pathogens.

1,306 citations