scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue

01 Sep 2017-Acta Biomaterialia (Elsevier)-Vol. 59, pp 2-11
TL;DR: The evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction is considered.
About: This article is published in Acta Biomaterialia.The article was published on 2017-09-01 and is currently open access. It has received 178 citations till now. The article focuses on the topics: Bioactive glass.
Citations
More filters
Journal ArticleDOI
01 Jan 2002

237 citations

Journal ArticleDOI
TL;DR: In this article, the development and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, titanium alloy, zinc and alloy, antibacterial magnesium alloy, and other antibacterial metals and alloys.

231 citations

01 Jan 2008
TL;DR: Suib is a Board of Trustees Distinguished Professor of Chemistry and received the CT Medal of Science for his work in catalysis, semiconductors and ceramic composites as discussed by the authors.
Abstract: Dr. Suib is a Board of Trustees Distinguished Professor of Chemistry and received the CT Medal of Science for his work in catalysis, semiconductors and ceramic composites. He received a B. S. degree in chemistry and geology at the State University College of New York at Fredonia. His graduate and postdoctoral training was completed at the University of Illinois at Champaign Urbana. In 1980, Steve joined UConn’s faculty in the Department of Chemistry and served as the head of the department for 10 years. He is a Fellow of the American Chemical Society and the American Institute of Chemists.

208 citations

01 Sep 2012
TL;DR: This study shows that BAG-S53P4 is a good and well-tolerated bone substitute, and can be used in treatment of osteomyelitis with good primary results.
Abstract: Bioactive glasses (BAGs) are bone substitutes with bone bonding, angiogenesis promoting and antibacterial properties. The bioactive process leading to bone bonding has been described as a sequence of reactions in the glass and at its surface. Implantation of the glass is followed by a rapid exchange of Na+ in the glass with H+ and H3O+ from the surrounding tissue, leading to the formation of silanol (SiOH) groups at the glass surface. Due to migration of Ca2+ and PO43− groups to the surface and cystallization, a CaO-P2O5 hydroxyapatite (HA) layer is formed on top of the Si-rich layer. Finally, cell interactions with the HA layer subsequently initiate the bone forming pathway. The rapid increase in pH and the subsequent osmotic effect caused by dissolution of the glass have been suggested to partly explain the antibacterial properties observed for BAGs. Comparing bactericidal effects of different BAGs, BAG-S53P4 has been shown to be the most effective, with the fastest killing or growth inhibitory effect. This antibacterial effect has been observed in vitro for all pathogens tested, including the most important aerobic and anaerobic pathogens, as well as very resistant bacteria. In a multicentre study in 2007–2009, BAG-S53P4 was used as bone graft substitute in treatment of osteomyelitis. Eleven patients (nine males, two females) with a radiologically diagnosed osteomyelitis in the lower extremity (N=10) and in the spine (N-1) participated. In the operation, the infected bone and the soft tissue were removed, and the cavitary bone defects were filled with BAG-S53P4 (BonAlive™, Bonalive Biomaterials Ltd., Finland). In four patients, muscle flaps were used as part of the treatment. Eight patients were treated in a one-stage procedure. Kanamycin granules were used in one patient and Garamycin granules (Septocol ®) in two patients. Patient data were obtained from hospital patient9 records until August 2010, resulting in a mean follow-up period of 29 months (range 15–43). BAG-S53P4 was well tolerated; no BAG-related adverse effects were seen in any patient. The use of BAG-S53P4 as a bone graft substitute resulted in a fast recovery. Long-term clinical outcome was good or excellent in ten of eleven patients. These primary results indicate that BAG-S53P4 can be considered as a good and usable material in treatment of osteomyelitis. After this study BAG-S53P4 has been used in several other patients with very promising results.

183 citations

Journal ArticleDOI
TL;DR: This review summarizes the state of the art of MBGs in this field, highlighting the latest evolutions and the specific role played by metallic antimicrobial ions that can be incorporated in the glass composition and then properly released.

148 citations

References
More filters
Journal ArticleDOI
21 May 1999-Science
TL;DR: Improvements in understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
Abstract: Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.

11,162 citations

Journal ArticleDOI
TL;DR: It is understood that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health, and that treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.
Abstract: Though biofilms were first described by Antonie van Leeuwenhoek, the theory describing the biofilm process was not developed until 1978. We now understand that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health. Using tools such as the scanning electron microscope and, more recently, the confocal laser scanning microscope, biofilm researchers now understand that biofilms are not unstructured, homogeneous deposits of cells and accumulated slime, but complex communities of surface-associated cells enclosed in a polymer matrix containing open water channels. Further studies have shown that the biofilm phenotype can be described in terms of the genes expressed by biofilm-associated cells. Microorganisms growing in a biofilm are highly resistant to antimicrobial agents by one or more mechanisms. Biofilm-associated microorganisms have been shown to be associated with several human diseases, such as native valve endocarditis and cystic fibrosis, and to colonize a wide variety of medical devices. Though epidemiologic evidence points to biofilms as a source of several infectious diseases, the exact mechanisms by which biofilm-associated microorganisms elicit disease are poorly understood. Detachment of cells or cell aggregates, production of endotoxin, increased resistance to the host immune system, and provision of a niche for the generation of resistant organisms are all biofilm processes which could initiate the disease process. Effective strategies to prevent or control biofilms on medical devices must take into consideration the unique and tenacious nature of biofilms. Current intervention strategies are designed to prevent initial device colonization, minimize microbial cell attachment to the device, penetrate the biofilm matrix and kill the associated cells, or remove the device from the patient. In the future, treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.

5,748 citations

Journal ArticleDOI
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,292 citations

Journal Article
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,213 citations

Journal ArticleDOI
TL;DR: An exhaustive list of in vitro antimicrobial susceptibility testing methods and detailed information on their advantages and limitations are reported.

3,499 citations