scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multilayered surface plasma resonance waveguide sensing device

01 Apr 2017-Optik (Urban & Fischer)-Vol. 135, pp 36-41
TL;DR: In this paper, a multilayered surface plasma resonance (SPR) waveguide sensing device based on a metal medium that features moderate temperature and humidity is proposed to achieve multifunctional detection.
About: This article is published in Optik.The article was published on 2017-04-01. It has received None citations till now. The article focuses on the topics: Waveguide (optics).
References
More filters
Journal ArticleDOI
TL;DR: The excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating is demonstrated, providing a way to excite and actively control plAsmonic waves in graphene.
Abstract: We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ∼80 cm–1 by applying a gate voltage. This novel structure provides a way to excite and actively control plasmonic waves in graphene and is thus an important building block of graphene plasmonic systems.

221 citations

Journal ArticleDOI
TL;DR: In this paper, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids using soluble starch as a dispersant is demonstrated, which provides an efficient and recyclable catalyst for the use in environmental protection applications.
Abstract: Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe3O4@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe3O4 nanoparticles were synthesized by the co-precipitation of Fe2+ and Fe3+ ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe3O4 nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe3O4@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 with a first-order rate constant (K) of 0.00808 s−1 and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

219 citations

Journal ArticleDOI
Yangpeng Dou, Junjun Peng, Wei Li, Li Ming, Huihong Liu, Hanmin Zhang1 
TL;DR: In this article, the reducibility of GO was investigated by analyzing the influence factors such as pH, duration, reaction temperature, and the weight ratio of AgNO3 and GO in the AgNP/GO nanocomposite mixture, which were evaluated by the UV-vis absorption spectroscopy.
Abstract: Silver nanoparticles/graphene oxide (AgNPs/GO) nanocomposites were prepared in a solution of AgNO3 and GO. The GO serves not only as a reductant but also as a substrate to support the as-reduced silver nanoparticles. The reducibility of GO was investigated by analyzing the influence factors such as pH, duration, the reaction temperature, and the weight ratio of AgNO3 and GO in the AgNP/GO nanocomposite mixture, which were evaluated by the UV–vis absorption spectroscopy. The results demonstrated that Ag nanoparticles with an average diameter of 5–10 nm were uniformly dispersed on the surface of GO nanosheets under the optimum synthesis conditions of pH between 8 and 11, weight ratio of AgNO3 and GO between 55 % and 60 %, and at 80 °C for 6 h. Moreover, the obtained AgNPs/GO nanocomposites exhibit good electrocatalytic activity for the reduction of p-nitrophenol to 4-(hydroxyamino) phenol.

89 citations

Journal ArticleDOI
TL;DR: An ultrasensitive protocol for surface plasma resonance (SPR) detection of adenosine is designed with the aptamer-based target-triggering cascade multiple cycle amplification, and streptavidin-coated Au-NPs (Au NPs-SA) enhancement to enhance the SPR signals.
Abstract: An ultrasensitive protocol for surface plasma resonance (SPR) detection of adenosine is designed with the aptamer-based target-triggering cascade multiple cycle amplification, and streptavidin-coated Au-NPs (Au NPs–SA) enhancement to enhance the SPR signals. The cascade amplification process consists of the aptamer-based target-triggering nicking enzyme signaling amplification (T-NESA), the nicking enzyme signaling amplification (NESA) and the hybridization chain reaction (HCR), the entire circle amplification process is triggered by the target recognition of adenosine. Upon recognition of the aptamer to target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1). The DNA s1 can be dissociated from HP1 under the reaction of nicking endonuclease to initiate the next hybridization and cleavage process. Moreover, the products of the upstream cycle (T-NESA) (DNA s2 and s3) could act as the “DNA trigger” of the downstream cycle (NESA and HCR) to generate further signal ampl...

66 citations

Journal ArticleDOI
TL;DR: A new sensing method for phosphopeptides by localized surface plasmon resonance (LSPR) using titania-coated gold nanoparticles immobilized on the surface of a glass slide as the sensing substrate and using UV-visible spectrophotometry as the detection tool.
Abstract: We herein demonstrate a new sensing method for phosphopeptides by localized surface plasmon resonance (LSPR) using titania-coated gold nanoparticles immobilized on the surface of a glass slide as the sensing substrate and using UV−visible spectrophotometry as the detection tool. Titania has been known to be an effective substrate for binding with phosphorylated species. The detection principle is the shift of wavelength of optical absorption due to SPR of the gold nanoparticles induced by binding of phosphorylated species with titania on the surface of the gold nanoparticles. The feasibility of the approach is demonstrated by detection of tryptic digest products of β-casein and milk. Gold nanoparticles coated with thin films of titania, immobilized on a glass slide, can selectively bind traces of phosphopeptides from complex samples, resulting in a wavelength shift of the absorption band in the SPR spectrum with good reproducibility. The LSPR results are confirmed by matrix-assisted laser desorption/ioniz...

65 citations