scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multilevel accumulative switching processes in growth-dominated AgInSbTe phase change material

TL;DR: High-contrast multilevel set and reset operations through accumulative switching in growth-dominated AgInSbTe PC material using a nanosecond laser-based pump-probe technique is reported to validate the structural changes involved duringMultilevel switching between amorphous and crystalline phases.
Abstract: Highly reproducible and precisely controlled gradual variation in optical reflectivity or electrical resistance between amorphous and crystalline phases of phase change (PC) material is a key requirement for multilevel programming. Here we report high-contrast multilevel set and reset operations through accumulative switching in growth-dominated AgInSbTe PC material using a nanosecond laser-based pump-probe technique. The precise tuning of fractions of crystallized or re-amorphized region is achieved by means of controlling the number of irradiated laser pulses enabling six stable multilevels with high-reflectivity contrast of 2% between any two states. Furthermore, Raman spectra of irradiated spots validate the structural changes involved during multilevel switching between amorphous and crystalline phases.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance, and discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.
Abstract: Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.

24 citations

Journal ArticleDOI
TL;DR: The most common kinds of non-volatile random access memory and their physical principles are reviewed, together with their relative pros and cons when compared with conventional CMOS-based circuits (Complementary Metal Oxide Semiconductor).
Abstract: Recent progress in the development of artificial intelligence technologies, aided by deep learning algorithms, has led to an unprecedented revolution in neuromorphic circuits, bringing us ever closer to brain-like computers. However, the vast majority of advanced algorithms still have to run on conventional computers. Thus, their capacities are limited by what is known as the von-Neumann bottleneck, where the central processing unit for data computation and the main memory for data storage are separated. Emerging forms of non-volatile random access memory, such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory, and resistive random access memory, are widely considered to offer the best prospect of circumventing the von-Neumann bottleneck. This is due to their ability to merge storage and computational operations, such as Boolean logic. This paper reviews the most common kinds of non-volatile random access memory and their physical principles, together with their relative pros and cons when compared with conventional CMOS-based circuits (Complementary Metal Oxide Semiconductor). Their potential application to Boolean logic computation is then considered in terms of their working mechanism, circuit design and performance metrics. The paper concludes by envisaging the prospects offered by non-volatile devices for future brain-inspired and neuromorphic computation.

20 citations

Journal ArticleDOI
TL;DR: In this review, the chemical structure of phase-change materials and their remarkable electrical properties are first reviewed, followed by an introduction of their applications on the storage fields and the physical principles of various emerging electrical devices using phase-changes are overviewed in association with their state-of-the-art progress.
Abstract: Phase-change materials, also well known as the Chalcogenide alloy, have received considerable attention during last two decades owing to its widespread applications in the field of the electrical storage market such as phase-change random access memory and phase-change probe memory. In addition to the storage devices, its unique electrical properties that can be dynamically tunable with respect to the electrical excitations lead to numerous novel applications represented by memristor and memristor-based neuromorphic electrical circuits. These emerging applications undoubtedly allows for a further exploitation of the potential of phase-change materials, and thus makes it advantageous over other storage medium like ferroelectric and magnetic materials. In order to help researchers understand the role of phase-change materials in these novel applications as well as their importance for citizen’s daily life, a comprehensive review that not only covers the traditional storage applications, but also the applications on these exotic devices becomes imperative. In this review, the chemical structure of phase-change materials and their remarkable electrical properties are first reviewed, followed by an introduction of their applications on the storage fields. The physical principles of various emerging electrical devices using phase-change materials are subsequently overviewed in association with their state-of-the-art progress. The prospect of phase-change materials for the future non-volatile electrical applications that are yet to be unraveled is finally envisaged.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: This review looks at the unique property combination that characterizes phase-change materials, in particular the contrast between the amorphous and crystalline states, and the origin of the fast crystallization kinetics.
Abstract: Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.

2,985 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the current state of phase change memory (PCM), a nonvolatile solid-state memory technology built around the large electrical contrast between the highly resistive amorphous and highly conductive crystalline states in so-called phase change materials.
Abstract: The authors survey the current state of phase change memory (PCM), a nonvolatile solid-state memory technology built around the large electrical contrast between the highly resistive amorphous and highly conductive crystalline states in so-called phase change materials. PCM technology has made rapid progress in a short time, having passed older technologies in terms of both sophisticated demonstrations of scaling to small device dimensions, as well as integrated large-array demonstrators with impressive retention, endurance, performance, and yield characteristics. They introduce the physics behind PCM technology, assess how its characteristics match up with various potential applications across the memory-storage hierarchy, and discuss its strengths including scalability and rapid switching speed. Challenges for the technology are addressed, including the design of PCM cells for low reset current, the need to control device-to-device variability, and undesirable changes in the phase change material that c...

921 citations

Journal ArticleDOI
TL;DR: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy with real-time switching energy.
Abstract: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy.

806 citations

Journal ArticleDOI
10 Jul 2014-Nature
TL;DR: Using extremely thin phase-change materials and transparent conductors, electrically induced stable colour changes in both reflective and semi-transparent modes are demonstrated and a pixelated approach can be used in displays on both rigid and flexible films.
Abstract: The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.

593 citations

Journal ArticleDOI
15 Dec 2017-Science
TL;DR: An alloying strategy to speed up the crystallization kinetics of scandium-doped antimony telluride is demonstrated, paving the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.
Abstract: Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

422 citations