scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multilevel inverters: a survey of topologies, controls, and applications

TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.
Citations
More filters
Journal ArticleDOI
18 May 2015
TL;DR: The most successful generator-converter configurations are addressed along with few promising topologies available in the literature from the market based survey, and the past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory.
Abstract: This paper presents a comprehensive study on the state-of-the-art and emerging wind energy technologies from the electrical engineering perspective. In an attempt to decrease cost of energy, increase the wind energy conversion efficiency, reliability, power density, and comply with the stringent grid codes, the electric generators and power electronic converters have emerged in a rigorous manner. From the market based survey, the most successful generator-converter configurations are addressed along with few promising topologies available in the literature. The back-to-back connected converters, passive generator-side converters, converters for multiphase generators, and converters without intermediate dc-link are investigated for high-power wind energy conversion systems (WECS), and presented in low and medium voltage category. The onshore and offshore wind farm configurations are analyzed with respect to the series/parallel connection of wind turbine ac/dc output terminals, and high voltage ac/dc transmission. The fault-ride through compliance methods used in the induction and synchronous generator based WECS are also discussed. The past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory. The important survey results, and technical merits and demerits of various WECS electrical systems are summarized by tables. The list of current and future wind turbines are also provided along with technical details.

694 citations


Cites background from "Multilevel inverters: a survey of t..."

  • ...With this arrangement, the converter output phase voltage contains three levels leading to reduced dv=dt and electromagnetic interference than 2L-VSCs [126], [127], [146], [147]....

    [...]

  • ...Moreover, the electromagnetic interference becomes lower as dv=dt decreases [127], [128]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided and a fault location method is proposed.
Abstract: The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.

665 citations


Cites background from "Multilevel inverters: a survey of t..."

  • ...Multilevel VSCs are particularly promising for high-power conversion applications, such as diode neutral-point-clamped converters and flying capacitor converters [29], [30]....

    [...]

Journal ArticleDOI
TL;DR: A new multilevel converter topology that has many steps with fewer power electronic switches results in reduction of the number of switches, losses, installation area, and converter cost.
Abstract: This paper introduces a new multilevel converter topology that has many steps with fewer power electronic switches. The proposed circuit consists of series-connected submultilevel converters blocks. The optimal structures of this topology are investigated for various objectives, such as minimum number of switches and capacitors, and minimum standing voltage on switches for producing maximum output voltage steps. A new algorithm for determination of dc voltage sourcespsila magnitudes has also been presented. The proposed topology results in reduction of the number of switches, losses, installation area, and converter cost. The operation and performance of the proposed multilevel converter has been verified by the simulation and experimental results of a single-phase 53-level multilevel converter.

645 citations


Cites background from "Multilevel inverters: a survey of t..."

  • ...One of the soft-switching circuits is a zerovoltage-switching type, which includes an auxiliary resonant commutated poleandacoupledinductor withzero-voltagetransition [11], [ 12 ]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a three-phase transformerless cascade PWM static synchronous compensator (STATCOM) is proposed for installation on industrial and utility power distribution systems, which devotes itself to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors.
Abstract: This paper presents a three-phase transformerless cascade pulsewidth-modulation (PWM) static synchronous compensator (STATCOM) intended for installation on industrial and utility power distribution systems. It proposes a control algorithm that devotes itself not only to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors. The control algorithm based on a phase-shifted carrier modulation strategy is prominent in having no restriction on the cascade number. Experimental waveforms verify that a 200-V 10-kVA cascade PWM STATCOM with star configuration has the capability of inductive to capacitive (or capacitive to inductive) operation at the rated reactive power of 10 kVA within 20 ms while keeping the nine dc mean voltages controlled and balanced even during the transient state.

600 citations


Cites background from "Multilevel inverters: a survey of t..."

  • ...The cascade PWM STATCOM for medium-voltage applications has attracted the attention of power electronics researchers/engineers who have been interested in power-factor correction and/or harmonic compensation [8], [11]–[15], [17], [18]....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a single-phase five-level photovoltaic inverter topology for grid-connected PV systems with a novel pulsewidth-modulated (PWM) control scheme that offers much less total harmonic distortion and can operate at near-unity power factor.
Abstract: This paper presents a single-phase five-level photovoltaic (PV) inverter topology for grid-connected PV systems with a novel pulsewidth-modulated (PWM) control scheme. Two reference signals identical to each other with an offset equivalent to the amplitude of the triangular carrier signal were used to generate PWM signals for the switches. A digital proportional-integral current control algorithm is implemented in DSP TMS320F2812 to keep the current injected into the grid sinusoidal and to have high dynamic performance with rapidly changing atmospheric conditions. The inverter offers much less total harmonic distortion and can operate at near-unity power factor. The proposed system is verified through simulation and is implemented in a prototype, and the experimental results are compared with that with the conventional single-phase three-level grid-connected PWM inverter.

584 citations

References
More filters
01 Jan 1980
TL;DR: In this article, a neutral-point-clamped PWM inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed.
Abstract: A new neutral-point-clamped pulsewidth modulation (PWM) inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed. This inverter output contains less harmonic content as compared with that of a conventional type. Two inverters are compared analytically and experimentally. In addition, a new PWM technique suitable for an ac drive system is applied to this inverter. The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.

4,432 citations

Journal ArticleDOI
TL;DR: The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.
Abstract: A new neutral-point-clamped pulsewidth modulation (PWM) inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed. This inverter output contains less harmonic content as compared with that of a conventional type. Two inverters are compared analytically and experimentally. In addition, a new PWM technique suitable for an ac drive system is applied to this inverter. The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.

4,328 citations


"Multilevel inverters: a survey of t..." refers background in this paper

  • ...Three different topologies have been proposed for multilevel inverters: diode-clamped (neutral-clamped) [4]; capac-...

    [...]

Proceedings ArticleDOI
08 Oct 1995
TL;DR: This paper presents three multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources.
Abstract: Multilevel voltage source converters are emerging as a new breed of power converter options for high-power applications. The multilevel voltage source converters typically synthesize the staircase voltage wave from several levels of DC capacitor voltages. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. The techniques to balance the voltage between different levels normally involve voltage clamping or capacitor charge control. There are several ways of implementing voltage balance in multilevel converters. Without considering the traditional magnetic coupled converters, this paper presents three recently developed multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources. The operating principle, features, constraints, and potential applications of these converters are discussed.

3,232 citations


"Multilevel inverters: a survey of t..." refers background or methods in this paper

  • ...Three different topologies have been proposed for multilevel inverters: diode-clamped (neutral-clamped) [4]; capacitor-clamped (flying capacitors) [1], [5], [6]; and cascaded multicell with separate dc sources [ 1 ], [7]‐[9]....

    [...]

  • ...Three different topologies have been proposed for multilevel inverters: diode-clamped (neutral-clamped) [4]; capacitor-clamped (flying capacitors) [ 1 ], [5], [6]; and cascaded multicell with separate dc sources [1], [7]‐[9]....

    [...]

  • ...The circuit has been called the flying capacitor inverter [ 1 ], [5], [6] with independent capacitors clamping the device voltage to one capacitor voltage level....

    [...]

  • ...For these reasons, a new family of multilevel inverters has emerged as the solution for working with higher voltage levels [ 1 ]‐[3]....

    [...]

Journal ArticleDOI
TL;DR: Direct self-control (DSC) as discussed by the authors is a simple method of signal processing that gives converter-fed three-phase machines an excellent dynamic performance, and it is sufficient to process the measured signals of the stator currents and the total flux linkages only.
Abstract: The new direct self-control (DSC) is a simple method of signal processing that gives converter-fed three-phase machines an excellent dynamic performance. To control the torque of, say, an induction motor, it is sufficient to process the measured signals of the stator currents and the total flux linkages only. In the basic version of DSC, the power semiconductors of a three-phase voltage source inverter are directly switched on and off via three Schmitt triggers, comparing the time integrals of line-to-line voltages to a reference value of desired flux, if the torque has not yet reached an upper-limit value of a two-limit torque control. Optimal performance of drive systems is accomplished in steady state as well as under transient conditions by combination of several two-limit controls. >

1,730 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results show the superiority of the back-to-back diode-clamped converter over two-level pulsewidth-modulation-based drives.
Abstract: This paper presents transformerless multilevel power converters as an application for high-power and/or high-voltage electric motor drives. Multilevel converters: (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference or common-mode voltage; and (3) are suitable for large voltampere-rated motor drives and high voltages. The cascade inverter is a natural fit for large automotive all-electric drives because it uses several levels of DC voltage sources, which would be available from batteries or fuel cells. The back-to-back diode-clamped converter is ideal where a source of AC voltage is available, such as in a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over two-level pulsewidth-modulation-based drives.

1,398 citations