Multimedia ontology learning for automatic annotation and video browsing
30 Oct 2008-pp 387-394
...read more
Citations
More filters
[...]
TL;DR: The efficacy of the ontology-based approach is demonstrated by constructing an ontology for the cultural heritage domain of Indian classical dance, and a browsing application is developed for semantic access to the heritage collection of Indian dance videos.
Abstract: Preservation of intangible cultural heritage, such as music and dance, requires encoding of background knowledge together with digitized records of the performances. We present an ontology-based approach for designing a cultural heritage repository for that purpose. Since dance and music are recorded in multimedia format, we use Multimedia Web Ontology Language (MOWL) to encode the domain knowledge. We propose an architectural framework that includes a method to construct the ontology with a labeled set of training data and use of the ontology to automatically annotate new instances of digital heritage artifacts. The annotations enable creation of a semantic navigation environment in a cultural heritage repository. We have demonstrated the efficacy of our approach by constructing an ontology for the cultural heritage domain of Indian classical dance, and have developed a browsing application for semantic access to the heritage collection of Indian dance videos.
55 citations
[...]
TL;DR: This paper introduces Multi-Entity Bayesian Networks (MEBNs) as the means to combine first-order logic with probabilistic inference and facilitate the semantic analysis of Intangible Cultural Heritage content.
Abstract: In this paper we introduce Multi-Entity Bayesian Networks (MEBNs) as the means to combine first-order logic with probabilistic inference and facilitate the semantic analysis of Intangible Cultural Heritage (ICH) content. First, we mention the need to capture and maintain ICH manifestations for the safeguarding of cultural treasures. Second, we present the MEBN models and stress their key features that can be used as a powerful tool for the aforementioned cause. Third, we present the methodology followed to build a MEBN model for the analysis of a traditional dance. Finally, we compare the efficiency of our MEBN model with that of a simple Bayesian network and demonstrate its superiority in cases that demand for situation-specific treatment.
9 citations
Cites methods from "Multimedia ontology learning for au..."
[...]
[...]
TL;DR: A scheme based on an ontological framework, to recognize concepts in multimedia data, in order to provide effective content-based access to a closed, domain-specific multimedia collection to provide an effective video browsing interface to the user.
Abstract: In this paper, we propose a scheme based on an ontological framework, to recognize concepts in multimedia data, in order to provide effective content-based access to a closed, domain-specific multimedia collection. The ontology for the domain is constructed from high-level knowledge of the domain lying with the domain experts, and further fine-tuned and refined by learning from multimedia data annotated by them. MOWL, a multimedia extension to OWL, is used to encode the concept to media-feature associations in the ontology as well as the uncertainties linked with observation of the perceptual multimedia data. Media feature classifiers help recognize low-level concepts in the videos, but the novelty of our work lies in discovery of high-level concepts in video content using the power of ontological relations between the concepts. This framework is used to provide rich, conceptual annotations to the video database, which can further be used to create hyperlinks in the video collection, to provide an effective video browsing interface to the user.
6 citations
Cites background or methods from "Multimedia ontology learning for au..."
[...]
[...]
[...]
TL;DR: A novel dance posture based annotation model by combining features using Multiple Kernel Learning (MKL) and a novel feature representation which represents the local texture properties of the image is proposed.
Abstract: We present a novel dance posture based annotation model by combining features using Multiple Kernel Learning (MKL). We have proposed a novel feature representation which represents the local texture properties of the image. The annotation model is defined in the direct a cyclic graph structure using the binary MKL algorithm. The bag-of-words model is applied for image representation. The experiments have been performed on the image collection belonging to two Indian classical dances (Bharatnatyam and Odissi). The annotation model has been tested using SIFT and the proposed feature individually and by optimally combining both the features. The experiments have shown promising results.
6 citations
Cites methods from "Multimedia ontology learning for au..."
[...]
[...]
TL;DR: This work presents an ontology based approach to capture and preserve the knowledge with digital heritage artefacts, and proposes the use of Multimedia Web Ontology (MOWL) that supports probabilistic reasoning with media properties of domain concepts, to encode the domain knowledge.
Abstract: Cultural heritage is encoded in a variety of forms. The task of preserving heritage involves preserving the tangible and intangible resources that broadly define that heritage. A significant aspect of intangible heritage resources are performing arts which include classical dance and music. Digital heritage resources include heritage artefacts in digitized form as well as the background knowledge that puts them in perspective. We present an ontology based approach to capture and preserve the knowledge with digital heritage artefacts. Since the artefacts are generally preserved in multimedia format, we propose the use of Multimedia Web Ontology (MOWL) that supports probabilistic reasoning with media properties of domain concepts, to encode the domain knowledge. We propose an architectural framework that includes a method to construct the ontology with a labelled set of training data and use of the ontology to automatically annotate new instances of digital heritage artefacts. The annotations enable creation of a semantic navigation environment in a cultural heritage repository. We have realized a proof of concept in the domain of Indian Classical Dance and present some results.
4 citations
Cites background from "Multimedia ontology learning for au..."
[...]
References
More filters
[...]
TL;DR: A novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks and indicates that learning curves characterizing the procedure that exploits the local structure converge faster than these of the standard procedure.
Abstract: In this paper we examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability tables (CPTs), that quantify these networks. This increases the space of possible models, enabling the representation of CPTs with a variable number of parameters that depends on the learned local structures. The resulting learning procedure is capable of inducing models that better emulate the real complexity of the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures, as well as an empirical evaluation of the proposed method. This evaluation indicates that learning curves characterizing the procedure that exploits the local structure converge faster than these of the standard procedure. Our results also show that networks learned with local structure tend to be more complex (in terms of arcs), yet require less parameters.
544 citations
[...]
TL;DR: The OntoLearn system is an infrastructure for automated ontology learning from domain text that uses natural language processing and machine learning techniques, and is part of a more general ontology engineering architecture.
Abstract: Our OntoLearn system is an infrastructure for automated ontology learning from domain text. It is the only system, as far as we know, that uses natural language processing and machine learning techniques, and is part of a more general ontology engineering architecture. We describe the system and an experiment in which we used a machine-learned tourism ontology to automatically translate multiword terms from English to Italian. The method can apply to other domains without manual adaptation.
354 citations
[...]
TL;DR: A method for describing human activities from video images based on concept hierarchies of actions based on semantic primitives, which demonstrates the performance of the proposed method by several experiments.
Abstract: We propose a method for describing human activities from video images based on concept hierarchies of actions. Major difficulty in transforming video images into textual descriptions is how to bridge a semantic gap between them, which is also known as inverse Hollywood problem. In general, the concepts of events or actions of human can be classified by semantic primitives. By associating these concepts with the semantic features extracted from video images, appropriate syntactic components such as verbs, objects, etc. are determined and then translated into natural language sentences. We also demonstrate the performance of the proposed method by several experiments.
289 citations
[...]
TL;DR: This work proposes to incorporate Bayesian networks (BN), a widely used graphic model for knowledge representation under uncertainty and OWL, the de facto industry standard ontology language recommended by W3C to support uncertain ontology representation and ontology reasoning and mapping.
Abstract: To support uncertain ontology representation and ontology reasoning and mapping, we propose to incorporate Bayesian networks (BN), a widely used graphic model for knowledge representation under uncertainty and OWL, the de facto industry standard ontology language recommended by W3C. First, OWL is augmented to allow additional probabilistic markups, so probabilities can be attached with individual concepts and properties in an OWL ontology. Secondly, a set of translation rules is defined to convert this probabilistically annotated OWL ontology into the directed acyclic graph (DAG) of a BN. Finally, the BN is completed by constructing conditional probability tables (CPT) for each node in the DAG. Our probabilistic extension to OWL is consistent with OWL semantics, and the translated BN is associated with a joint probability distribution over the application domain. General Bayesian network inference procedures (e.g., belief propagation or junction tree) can be used to compute P(C/spl bsol/e): the degree of the overlap or inclusion between a concept C and a concept represented by a description e. We also provide a similarity measure that can be used to find the most similar concept that a given description belongs to.
260 citations
[...]
TL;DR: A new learning-oriented model for ontology development and a framework for ontological learning are proposed and important dimensions for classifying ontology learning approaches and techniques are identified.
Abstract: Ontology is one of the fundamental cornerstones of the semantic Web The pervasive use of ontologies in information sharing and knowledge management calls for efficient and effective approaches to ontology development Ontology learning, which seeks to discover ontological knowledge from various forms of data automatically or semi-automatically, can overcome the bottleneck of ontology acquisition in ontology development Despite the significant progress in ontology learning research over the past decade, there remain a number of open problems in this field This paper provides a comprehensive review and discussion of major issues, challenges, and opportunities in ontology learning We propose a new learning-oriented model for ontology development and a framework for ontology learning Moreover, we identify and discuss important dimensions for classifying ontology learning approaches and techniques In light of the impact of domain on choosing ontology learning approaches, we summarize domain characteristics that can facilitate future ontology learning effort The paper offers a road map and a variety of insights about this fast-growing field
205 citations
Related Papers (5)
[...]
[...]
[...]