scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing

TL;DR: The concept of using estimation of distribution algorithm for tuning meta-heuristic control parameters is efficient and effective and becomes a new direction for improving MH performance.
Abstract: This paper proposes a new self-adaptive meta-heuristic (MH) algorithm for multiobjective optimisation The adaptation is accomplished by means of estimation of distribution The differential evolution reproduction strategy is modified and used in this dominance-based multiobjective optimiser whereas population-based incremental learning is used to estimate the control parameters The new method is employed to solve aeroelastic multiobjective optimisation of an aircraft wing which optimises structural weight and flutter speed Design variables in the aeroelastic design problem include thicknesses of ribs, spars and composite layers Also, the ply orientation of the upper and lower composite skins are assigned as the design variables Additional benchmark test problems are also use to validate the search performance of the proposed algorithm The performance validation reveals that the proposed optimiser is among the state-of-the-art multiobjective meta-heuristics The concept of using estimation of distribution algorithm for tuning meta-heuristic control parameters is efficient and effective and becomes a new direction for improving MH performance
Citations
More filters
Journal ArticleDOI
19 Aug 2021
TL;DR: The purpose of this research is to design a new aircraft wing structure with a tapered shape for ribs, spars, and skins including a torsion beam for external actuating torques which is anticipated to modify the aeroelastic characteristic of the aircraft wing using multi-objective optimization.
Abstract: This paper presents multi-objective topology and sizing optimization of a morphing wing structure. The purpose of this paper is to design a new aircraft wing structure with a tapered shape for ribs, spars, and skins including a torsion beam for external actuating torques, which is anticipated to modify the aeroelastic characteristic of the aircraft wing using multi-objective optimization. Two multi-objective topology optimization problems are proposed employing ground element structures with high- and low-grid resolutions. The design problem is to minimize mass, maximize difference of lift effectiveness, and maximize the buckling factor of an aircraft wing subject to aeroelastic and structural constraints including lift effectiveness, critical speed, and buckling factors. The design variables include aircraft wing structure dimensions and thickness distribution. The proposed optimization problems are solved by an efficient multi-objective metaheuristic algorithm while the results are compared and discussed. The Pareto optimal fronts obtained for all tests were compared based on a hypervolume metric. The objective function values for Case I and Case II at 10 selected optimal solutions exhibit a range of structural mass as 115.3216–411.6250 kg, 125.0137–440.5869 kg, lift effectiveness as 1.0514–1.1451, 1.0834–1.1639 and bucking factor as 38.895–1133.1864 Hz, 158.1264–1844.4355 Hz, respectively. The best results reveal unconventional aircraft wing structures that can be manufactured using additive manufacturing. This research is expected to serve as a foundation for future research into multi-objective topology optimization of morphing wing structures based on the ground element framework.

12 citations

Journal ArticleDOI
TL;DR: This paper formulates MOSOPs with several objective functions combined with various formulations to extract solutions from the Pareto front according to preferences of the decision-maker used in the ground-structure system.

11 citations

Journal ArticleDOI
TL;DR: A bi-objective hybrid particle swarm optimization (BHPSO) algorithm is proposed for the simultaneous optimization of the search and track functions, under the constraint of limited active subarrays and power budget, and it is proved that the solutions have a proportional relationship.

9 citations

Journal ArticleDOI
TL;DR: A possibilistic safety index-based design optimization (PSIBDO) with fuzzy uncertainties is proposed to overcome difficult tasks from the original probabilistic problem to increase computational efficiency in the design process.
Abstract: The purpose of this paper is to design aircraft wing using reliability-based design optimization concerned to fuzzy uncertainty variables. A possibilistic safety index-based design optimization (PSIBDO) with fuzzy uncertainties is proposed to overcome difficult tasks from the original probabilistic problem. The design problem is to minimize mass of a composite aircraft wing subject to aeroelastic and structural constraints through consideration of the material properties are the uncertainties. The design variables include aircraft wing structure dimensions. The reliability-based design approach is needed to alleviate such a problem. Due to the complexity of the aircraft wing structures design and aeroelastic analysis, nonprobability-based design is an alternative choice to increase computational efficiency in the design process. The optimum results show the efficiency of our proposed approach.

8 citations

Journal ArticleDOI
TL;DR: In this article , a hybrid equilibrium optimizer slime mold algorithm (EOSMA) was proposed to solve the inverse kinematics of complex manipulators efficiently, and the average convergence accuracy was 10e-17 and 10 e-18.
Abstract: In order to solve the inverse kinematics (IK) of complex manipulators efficiently, a hybrid equilibrium optimizer slime mould algorithm (EOSMA) is proposed. Firstly, the concentration update operator of the equilibrium optimizer is used to guide the anisotropic search of the slime mould algorithm to improve the search efficiency. Then, the greedy strategy is used to update the individual and global historical optimal to accelerate the algorithm's convergence. Finally, the random difference mutation operator is added to EOSMA to increase the probability of escaping from the local optimum. On this basis, a multi-objective EOSMA (MOEOSMA) is proposed. Then, EOSMA and MOEOSMA are applied to the IK of the 7 degrees of freedom manipulator in two scenarios and compared with 15 single-objective and 9 multi-objective algorithms. The results show that EOSMA has higher accuracy and shorter computation time than previous studies. In two scenarios, the average convergence accuracy of EOSMA is 10e-17 and 10e-18, and the average solution time is 0.05 s and 0.36 s, respectively.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Abstract: Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN/sup 2/) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed.

37,111 citations

Journal ArticleDOI
TL;DR: Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjectives optimization problems.
Abstract: Decomposition is a basic strategy in traditional multiobjective optimization. However, it has not yet been widely used in multiobjective evolutionary optimization. This paper proposes a multiobjective evolutionary algorithm based on decomposition (MOEA/D). It decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Each subproblem is optimized by only using information from its several neighboring subproblems, which makes MOEA/D have lower computational complexity at each generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjective optimization problems. It has been shown that MOEA/D using objective normalization can deal with disparately-scaled objectives, and MOEA/D with an advanced decomposition method can generate a set of very evenly distributed solutions for 3-objective test instances. The ability of MOEA/D with small population, the scalability and sensitivity of MOEA/D have also been experimentally investigated in this paper.

6,657 citations

DOI
01 Jan 2001
TL;DR: An improved version of SPEA, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method.
Abstract: The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Pareto-optimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern elitist methods, PESA and NSGA-II, on different test problems yields promising results.

5,062 citations

Journal ArticleDOI
TL;DR: The qualitative and quantitative results prove the efficiency of SSA and MSSA and demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.

3,027 citations

Journal ArticleDOI
TL;DR: The results of the test functions prove that the proposed ALO algorithm is able to provide very competitive results in terms of improved exploration, local optima avoidance, exploitation, and convergence, showing that this algorithm has merits in solving constrained problems with diverse search spaces.

2,265 citations