scispace - formally typeset

Journal ArticleDOI

Multipass-friction Stir Processing (MFSP) of Ti-6Al-4V Alloy and Investigation of Flow Properties

08 Nov 2018-Vol. 422, Iss: 1, pp 012017

AbstractMultipass friction stir processing (MFSP) of the Ti-6Al-4V alloy was carried out at 600 tool rpm and 80 mm/min traverse speed. After first pass, the initial elongated α structure transformed to prior β grains, consisting of a mixture of acicular α'and very fine lamellar α colonies along with α layer grain boundary in stir zone (SZ). This subsequently transformed to equiaxed α grain via dynamic recrystallization (DRX) process. With the increase in the number of FSP passes the fraction of equiaxed α grains was found to increase, reaching almost fully equiaxed α structure in SZ upon completion of the fifth pass. Flow properties of MFSP Ti-6Al-4V alloy were investigated by differential strain rate test carried out at 927°C. There appears no significant variation in the strain rate sensitivity index (m ≥ 0.3) values between as received Ti-6Al-4V alloy and MFSP Ti-6Al-4V alloy specimens.

...read more


References
More filters
BookDOI
28 Jan 2005
Abstract: Foreword.List of Contributors.1. Structure and Properties of Titanium and Titanium Alloys (M. Peters, et al.).2. Beta Titanium Alloys (G. Terlinde and G. Fischer).3. Orthorhombic Titanium Aluminides: Intermetallic with Improved Damage Tolerance (J. Kumpfert and C. Leyens).4. gamma-Titanium Aluminide Alloys: Alloy Design and Properties (F. Appel and M. Oehring).5. Fatigue of Titanium Alloys (L. Wagner and J.K. Bigoney).6. Oxidation and Protection of Titanium Alloys and Titanium Aluminides (C. Leyens).7. Titanium and Titanium Alloys - From Raw material to Semi-finished Products (H. Sibum).8. Fabrication of Titanium Alloys (M. Peters and C. Leyens).9. Investment Casting of Titanium (H.-P. Nicolai and Chr. Liesner).10. Superplastic Forming and Diffusion Bonding of Titanium and Titanium Alloys (W. Beck).11. Forging of Titanium (G. Terlinde, et al.).12. Continuous Fiber Reinforced Titanium matrix Composites: Fabrication, Properties and Applications (C. Leyens, et al.).13. Titanium Alloys for Aerospace Applications (M. Peters, et al.).14. Production, Processing and Application of gamma(TiAl)-Based Alloys (H. Kestler and H. Clemens).15. Non-Aerospace Applications of Titanium and Titanium Alloys (M. Peters and C. Leyens).16. Titanium and its Alloys for Medical Applications (J. Breme, et al.).17. Titanium in Dentistry (J. Lindigkeit).18. Titanium in Automotive Production (O. Schauerte).19. Offshore Applications for Titanium Alloys (L. Lunde and M. Seiersten).Subject Index.

2,044 citations

Journal ArticleDOI
Abstract: Friction stir processing (FSP), developed based on the basic principles of friction stir welding (FSW), a solid-state joining process originally developed for aluminum alloys, is an emerging metalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

795 citations

Journal ArticleDOI
Abstract: Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. Commercial feasibility of the FSW process for harder alloys such as steels and titanium alloys awaits the development of cost effective and durable tools which lead to structurally sound welds consistently. Material selection and design profoundly affect the performance of tools, weld quality and cost. Here we review and critically examine several important aspects of FSW tools such as tool material selection, geometry and load bearing ability, mechanisms of tool degradation and process economics.

515 citations

Journal ArticleDOI
Abstract: Commercial 7075Al rolled plates were subjected to friction stir processing (FSP) with different processing parameters, resulting in two fine-grained 7075Al alloys with a grain size of 3.8 and 7.5 μm. Heat treatment at 490 °C for 1 h showed that the fine grain microstructures were stable at high temperatures. Superplastic investigations in the temperature range of 420–530 °C and strain rate range of 1×10−3–1×10−1 s−1 demonstrated that a decrease in grain size resulted in significantly enhanced superplasticity and a shift to higher optimum strain rate and lower optimum deformation temperature. For the 3.8 μm 7075Al alloy, superplastic elongations of >1250% were obtained at 480 °C in the strain rate range of 3×10−3–3×10−2 s−1, whereas the 7.5 μm 7075Al alloy exhibited a maximum ductility of 1042% at 500 °C and 3×10−3 s−1. The analyses of the superplastic data for the two alloys revealed a stress exponent of 2, an inverse grain size dependence of 2, and an activation energy close to that for grain boundary self-diffusion. This indicates that grain boundary sliding is the main deformation mechanism for the FSP 7075Al. This was verified by SEM examinations on the surfaces of deformed specimens.

353 citations