scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multipass-friction Stir Processing (MFSP) of Ti-6Al-4V Alloy and Investigation of Flow Properties

08 Nov 2018-Vol. 422, Iss: 1, pp 012017
TL;DR: In this article, a multipass friction stir processing (MFSP) of the Ti-6Al-4V alloy was carried out at 600 tool rpm and 80 mm/min traverse speed, where the initial elongated α structure transformed to prior β grains, consisting of a mixture of acicular α'and very fine lamellar α colonies along with α layer grain boundary in stir zone (SZ).
Abstract: Multipass friction stir processing (MFSP) of the Ti-6Al-4V alloy was carried out at 600 tool rpm and 80 mm/min traverse speed. After first pass, the initial elongated α structure transformed to prior β grains, consisting of a mixture of acicular α'and very fine lamellar α colonies along with α layer grain boundary in stir zone (SZ). This subsequently transformed to equiaxed α grain via dynamic recrystallization (DRX) process. With the increase in the number of FSP passes the fraction of equiaxed α grains was found to increase, reaching almost fully equiaxed α structure in SZ upon completion of the fifth pass. Flow properties of MFSP Ti-6Al-4V alloy were investigated by differential strain rate test carried out at 927°C. There appears no significant variation in the strain rate sensitivity index (m ≥ 0.3) values between as received Ti-6Al-4V alloy and MFSP Ti-6Al-4V alloy specimens.
References
More filters
BookDOI
28 Jan 2005
TL;DR: Peters et al. as discussed by the authors discussed the structure and properties of Titanium and Titanium Aluminides, and proposed a continuous fiber reinforced Titanium matrix composites (C.Leyens, et al.).
Abstract: Foreword.List of Contributors.1. Structure and Properties of Titanium and Titanium Alloys (M. Peters, et al.).2. Beta Titanium Alloys (G. Terlinde and G. Fischer).3. Orthorhombic Titanium Aluminides: Intermetallic with Improved Damage Tolerance (J. Kumpfert and C. Leyens).4. gamma-Titanium Aluminide Alloys: Alloy Design and Properties (F. Appel and M. Oehring).5. Fatigue of Titanium Alloys (L. Wagner and J.K. Bigoney).6. Oxidation and Protection of Titanium Alloys and Titanium Aluminides (C. Leyens).7. Titanium and Titanium Alloys - From Raw material to Semi-finished Products (H. Sibum).8. Fabrication of Titanium Alloys (M. Peters and C. Leyens).9. Investment Casting of Titanium (H.-P. Nicolai and Chr. Liesner).10. Superplastic Forming and Diffusion Bonding of Titanium and Titanium Alloys (W. Beck).11. Forging of Titanium (G. Terlinde, et al.).12. Continuous Fiber Reinforced Titanium matrix Composites: Fabrication, Properties and Applications (C. Leyens, et al.).13. Titanium Alloys for Aerospace Applications (M. Peters, et al.).14. Production, Processing and Application of gamma(TiAl)-Based Alloys (H. Kestler and H. Clemens).15. Non-Aerospace Applications of Titanium and Titanium Alloys (M. Peters and C. Leyens).16. Titanium and its Alloys for Medical Applications (J. Breme, et al.).17. Titanium in Dentistry (J. Lindigkeit).18. Titanium in Automotive Production (O. Schauerte).19. Offshore Applications for Titanium Alloys (L. Lunde and M. Seiersten).Subject Index.

2,278 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) is an emerging metalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components.
Abstract: Friction stir processing (FSP), developed based on the basic principles of friction stir welding (FSW), a solid-state joining process originally developed for aluminum alloys, is an emerging metalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

955 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding as mentioned in this paper.
Abstract: Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. Commercial feasibility of the FSW process for harder alloys such as steels and titanium alloys awaits the development of cost effective and durable tools which lead to structurally sound welds consistently. Material selection and design profoundly affect the performance of tools, weld quality and cost. Here we review and critically examine several important aspects of FSW tools such as tool material selection, geometry and load bearing ability, mechanisms of tool degradation and process economics.

624 citations

Journal ArticleDOI
TL;DR: In this article, two fine-grained 7075Al alloys with a grain size of 3.8 and 7.5 μm were subjected to friction stir processing (FSP) with different processing parameters.

380 citations