scispace - formally typeset
Search or ask a question

Multiple View Geometry

TL;DR: A perspective (central) projection camera is represented by a matrix that can be computed from the correspondence of four (or more) points.
Abstract: A perspective (central) projection camera is represented by a matrix. The most general perspective transformation transformation between two planes (a world plane and the image plane, or two image planes induced by a world plane) is a plane projective transformation. This can be computed from the correspondence of four (or more) points. The epipolar geometry between two views is represented by the fundamental matrix. This can be computed from the correspondence of seven (or more) points. Imaging Geometry
Citations
More filters
Journal ArticleDOI
TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Abstract: Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can be easily extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth, and are making both the code and data sets available on the Web.

7,458 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: This work presents a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface that consists of an image-based modeling front end that automatically computes the viewpoint of each photograph and a sparse 3D model of the scene and image to model correspondences.
Abstract: We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses image-based rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.

3,398 citations

Journal ArticleDOI
TL;DR: This paper presents structure-from-motion and image-based rendering algorithms that operate on hundreds of images downloaded as a result of keyword-based image search queries like “Notre Dame” or “Trevi Fountain,” and presents these algorithms and results as a first step towards 3D modeled sites, cities, and landscapes from Internet imagery.
Abstract: There are billions of photographs on the Internet, comprising the largest and most diverse photo collection ever assembled. How can computer vision researchers exploit this imagery? This paper explores this question from the standpoint of 3D scene modeling and visualization. We present structure-from-motion and image-based rendering algorithms that operate on hundreds of images downloaded as a result of keyword-based image search queries like "Notre Dame" or "Trevi Fountain." This approach, which we call Photo Tourism, has enabled reconstructions of numerous well-known world sites. This paper presents these algorithms and results as a first step towards 3D modeling of the world's well-photographed sites, cities, and landscapes from Internet imagery, and discusses key open problems and challenges for the research community.

2,207 citations

Book
Richard Szeliski1
31 Dec 2006
TL;DR: In this article, the basic motion models underlying alignment and stitching algorithms are described, and effective direct (pixel-based) and feature-based alignment algorithms, and blending algorithms used to produce seamless mosaics.
Abstract: This tutorial reviews image alignment and image stitching algorithms. Image alignment algorithms can discover the correspondence relationships among images with varying degrees of overlap. They are ideally suited for applications such as video stabilization, summarization, and the creation of panoramic mosaics. Image stitching algorithms take the alignment estimates produced by such registration algorithms and blend the images in a seamless manner, taking care to deal with potential problems such as blurring or ghosting caused by parallax and scene movement as well as varying image exposures. This tutorial reviews the basic motion models underlying alignment and stitching algorithms, describes effective direct (pixel-based) and feature-based alignment algorithms, and describes blending algorithms used to produce seamless mosaics. It ends with a discussion of open research problems in the area.

1,226 citations

Journal ArticleDOI
TL;DR: A complete system to build visual models from camera images is presented and a combined approach with view-dependent geometry and texture is presented, as an application fusion of real and virtual scenes is also shown.
Abstract: In this paper a complete system to build visual models from camera images is presented. The system can deal with uncalibrated image sequences acquired with a hand-held camera. Based on tracked or matched features the relations between multiple views are computed. From this both the structure of the scene and the motion of the camera are retrieved. The ambiguity on the reconstruction is restricted from projective to metric through self-calibration. A flexible multi-view stereo matching scheme is used to obtain a dense estimation of the surface geometry. From the computed data different types of visual models are constructed. Besides the traditional geometry- and image-based approaches, a combined approach with view-dependent geometry and texture is presented. As an application fusion of real and virtual scenes is also shown.

1,029 citations

References
More filters
Journal ArticleDOI
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

23,396 citations

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations

Journal ArticleDOI
01 Jan 1987-Nature
TL;DR: A simple algorithm for computing the three-dimensional structure of a scene from a correlated pair of perspective projections is described here, when the spatial relationship between the two projections is unknown.
Abstract: A simple algorithm for computing the three-dimensional structure of a scene from a correlated pair of perspective projections is described here, when the spatial relationship between the two projections is unknown. This problem is relevant not only to photographic surveying1 but also to binocular vision2, where the non-visual information available to the observer about the orientation and focal length of each eye is much less accurate than the optical information supplied by the retinal images themselves. The problem also arises in monocular perception of motion3, where the two projections represent views which are separated in time as well as space. As Marr and Poggio4 have noted, the fusing of two images to produce a three-dimensional percept involves two distinct processes: the establishment of a 1:1 correspondence between image points in the two views—the ‘correspondence problem’—and the use of the associated disparities for determining the distances of visible elements in the scene. I shall assume that the correspondence problem has been solved; the problem of reconstructing the scene then reduces to that of finding the relative orientation of the two viewpoints.

2,671 citations

Book
19 Nov 1993

1,260 citations