scispace - formally typeset
Open AccessJournal ArticleDOI

Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

Reads0
Chats0
TLDR
As the ocean will change more gradually over coming decades than in "future shock" perturbation investigations, it is likely that some species, particularly those with short generation times, may be able to tolerate near-future oceanic change through acclimatization and/or adaption.
Abstract
Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over coming decades than in "future shock" perturbation investigations, it is likely that some species, particularly those with short generation times, may be able to tolerate near-future oceanic change through acclimatization and/or adaption.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment

TL;DR: The find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and the importance of doing so to make ecologically relevant inferences about physiological responses to global change is emphasized.
Journal ArticleDOI

Coastal ocean acidification: The other eutrophication problem

TL;DR: In this paper, the potential for acidification in eutrophic estuaries was assessed during the onset, peak, and demise of low oxygen conditions in systems across the northeast US including Narragansett Bay (RI), Long Island Sound (CT-NY), Jamaica Bay (NY), and Hempstead Bay ( NY).
Journal ArticleDOI

A review and meta‐analysis of the effects of multiple abiotic stressors on marine embryos and larvae

TL;DR: This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied.
Journal ArticleDOI

Physiological Responses to Shifts in Multiple Environmental Stressors: Relevance in a Changing World

TL;DR: The symposium "Physiological Responses to Simultaneous Shifts in Multiple Environmental Stressors: Relevance in a Changing World" focused on physiological studies in which multiple environmental variables were simultaneously examined and brought together an international group of early-career and established speakers with unique perspectives on studies of multistressors.
Journal ArticleDOI

Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems.

TL;DR: Critical gaps in understanding of HABs as a climate change co-stressor must be addressed in order to develop management plans that adequately protect fisheries, aquaculture, aquatic ecosystems, and human health.
References
More filters
Journal ArticleDOI

Ocean Acidification: The Other CO 2 Problem

TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Journal ArticleDOI

Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans

TL;DR: The in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data are estimated, and the future impacts of anthropogenic CO2 on Ca CO3 shell–forming species are discussed.
Journal ArticleDOI

The impacts of climate change in coastal marine systems.

TL;DR: The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature as discussed by the authors, however, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex.
Journal ArticleDOI

Climate Change Impacts on Marine Ecosystems

TL;DR: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects.
Journal ArticleDOI

The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.

TL;DR: This work states that local extinctions from heat death may be offset by in-migration of genetically warm-adapted conspecifics from mid-latitude ‘hot spots’, where midday low tides in summer select for heat tolerance.
Related Papers (5)