scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization.

TL;DR: This free-standing, adhesive, tough, and biocompatible hydrogel may be more convenient for surgical applications than adhesives that involve in situ gelation and extra agents.
Abstract: Adhesive hydrogels are attractive biomaterials for various applications, such as electronic skin, wound dressing, and wearable devices. However, fabricating a hydrogel with both adequate adhesiveness and excellent mechanical properties remains a challenge. Inspired by the adhesion mechanism of mussels, we used a two-step process to develop an adhesive and tough polydopamine-clay-polyacrylamide (PDA-clay-PAM) hydrogel. Dopamine was intercalated into clay nanosheets and limitedly oxidized between the layers, resulting in PDA-intercalated clay nanosheets containing free catechol groups. Acrylamide monomers were then added and in situ polymerized to form the hydrogel. Unlike previous single-use adhesive hydrogels, our hydrogel showed repeatable and durable adhesiveness. It adhered directly on human skin without causing an inflammatory response and was easily removed without causing damage. The adhesiveness of this hydrogel was attributed to the presence of enough free catechol groups in the hydrogel, which we...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an adhesive and conductive hydrogel is developed with long-lasting moisture lock-in capability and extreme temperature tolerance, which is formed in a binary-solvent system composed of water and glycerol.
Abstract: Conductive hydrogels are a promising class of materials to design bioelectronics for new technological interfaces with human body, which are required to work for a long-term or under extreme environment. Traditional hydrogels are limited in short-term usage under room temperature, as it is difficult to retain water under cold or hot environment. Inspired by the antifreezing/antiheating behaviors from nature, and based on mussel chemistry, an adhesive and conductive hydrogel is developed with long-lasting moisture lock-in capability and extreme temperature tolerance, which is formed in a binary-solvent system composed of water and glycerol. Polydopamine (PDA)-decorated carbon nanotubes (CNTs) are incorporated into the hydrogel, which assign conductivity to the hydrogel and serve as nanoreinforcements to enhance the mechanical properties of the hydrogel. The catechol groups on PDA and viscous glycerol endow the hydrogel with high tissue adhesiveness. Particularly, the hydrogel is thermal tolerant to maintain all the properties under extreme wide tempreature spectrum (−20 or 60 °C) or stored for a long term. In summary, this mussel-inspired hydrogel is a promising material for self-adhesive bioelectronics to detect biosignals in cold or hot environments, and also as a dressing to protect skin from injuries related to frostbites or burns.

695 citations

Journal ArticleDOI
10 Aug 2021-ACS Nano
TL;DR: In this paper, a comprehensive review of the functional hydrogel as a wound dressing is presented, which summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogels such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature.
Abstract: Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.

658 citations

Journal ArticleDOI
TL;DR: The authors report on the addition of silver-Lignin nanoparticles as a dynamic catechol redox system to maintaincatechol/quinone balance, making a reusable, antibacterial bioadhesive.
Abstract: Adhesive hydrogels have gained popularity in biomedical applications, however, traditional adhesive hydrogels often exhibit short-term adhesiveness, poor mechanical properties and lack of antibacterial ability. Here, a plant-inspired adhesive hydrogel has been developed based on Ag-Lignin nanoparticles (NPs)triggered dynamic redox catechol chemistry. Ag-Lignin NPs construct the dynamic catechol redox system, which creates long-lasting reductive-oxidative environment inner hydrogel networks. This redox system, generating catechol groups continuously, endows the hydrogel with long-term and repeatable adhesiveness. Furthermore, Ag-Lignin NPs generate free radicals and trigger self-gelation of the hydrogel under ambient environment. This hydrogel presents high toughness for the existence of covalent and non-covalent interaction in the hydrogel networks. The hydrogel also possesses good cell affinity and high antibacterial activity due to the catechol groups and bactericidal ability of Ag-Lignin NPs. This study proposes a strategy to design tough and adhesive hydrogels based on dynamic plant catechol chemistry.

573 citations

Journal ArticleDOI
TL;DR: This review is structured to give a comprehensive overview of adhesive hydrogels starting with the fundamental challenges of underwater adhesion, followed by synthetic approaches and fabrication techniques, as well as characterization methods, and their practical applications in tissue repair and regeneration, antifouling and antimicrobial applications, drug delivery, and cell encapsulation and delivery.
Abstract: Hydrogels are a unique class of polymeric materials that possess an interconnected porous network across various length scales from nano- to macroscopic dimensions and exhibit remarkable structure-derived properties, including high surface area, an accommodating matrix, inherent flexibility, controllable mechanical strength, and excellent biocompatibility. Strong and robust adhesion between hydrogels and substrates is highly desirable for their integration into and subsequent performance in biomedical devices and systems. However, the adhesive behavior of hydrogels is severely weakened by the large amount of water that interacts with the adhesive groups reducing the interfacial interactions. The challenges of developing tough hydrogel-solid interfaces and robust bonding in wet conditions are analogous to the adhesion problems solved by marine organisms. Inspired by mussel adhesion, a variety of catechol-functionalized adhesive hydrogels have been developed, opening a door for the design of multi-functional platforms. This review is structured to give a comprehensive overview of adhesive hydrogels starting with the fundamental challenges of underwater adhesion, followed by synthetic approaches and fabrication techniques, as well as characterization methods, and finally their practical applications in tissue repair and regeneration, antifouling and antimicrobial applications, drug delivery, and cell encapsulation and delivery. Insights on these topics will provide rational guidelines for using nature's blueprints to develop hydrogel materials with advanced functionalities and uncompromised adhesive properties.

395 citations

Journal ArticleDOI
TL;DR: The versatile interactions used in adhesives secreted by sandcastle worms and mussels are explored and the variety and combinations of interactions that can be used in the design of new adhesive systems are highlighted.
Abstract: Nature has developed protein-based adhesives whose underwater performance has attracted much research attention over the last few decades. The adhesive proteins are rich in catechols combined with amphiphilic and ionic features. This combination of features constitutes a supramolecular toolbox, to provide stimuli-responsive processing of the adhesive, to secure strong adhesion to a variety of surfaces, and to control the cohesive properties of the material. Here, the versatile interactions used in adhesives secreted by sandcastle worms and mussels are explored. These biological principles are then put in a broader perspective, and synthetic adhesive systems that are based on different types of supramolecular interactions are summarized. The variety and combinations of interactions that can be used in the design of new adhesive systems are highlighted.

383 citations

References
More filters
Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Abstract: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

8,669 citations


"Mussel-Inspired Adhesive and Tough ..." refers background in this paper

  • ...combination of noncovalent and covalent chemical interactions with the substrates.(9) Several...

    [...]

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks is reported, finding that these gels’ toughness is attributed to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping thenetwork of ionic crosslinks.
Abstract: Hydrogels with improved mechanical properties, made by combining polymer networks with ionic and covalent crosslinks, should expand the scope of applications, and may serve as model systems to explore mechanisms of deformation and energy dissipation. Hydrogels are used in flexible contact lenses, as scaffolds for tissue engineering and in drug delivery. Their poor mechanical properties have so far limited the scope of their applications, but new strong and stretchy materials reported here could take hydrogels into uncharted territories. The new system involves a double-network gel, with one network forming ionic crosslinks and the other forming covalent crosslinks. The fracture energy of these materials is very high: they can stretch to beyond 17 times their own length even when containing defects that usually initiate crack formation in hydrogels. The materials' toughness is attributed to crack bridging by the covalent network accompanied by energy dissipation through unzipping of the ionic crosslinks in the second network. Hydrogels are used as scaffolds for tissue engineering1, vehicles for drug delivery2, actuators for optics and fluidics3, and model extracellular matrices for biological studies4. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour5. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels6,7 have achieved stretches in the range 10–20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m−2 (ref. 8), as compared with ∼1,000 J m−2 for cartilage9 and ∼10,000 J m−2 for natural rubbers10. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties11,12,13,14,15,16,17,18; certain synthetic gels have reached fracture energies of 100–1,000 J m−2 (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m−2. Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels’ toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.

3,856 citations

Journal ArticleDOI

3,621 citations


"Mussel-Inspired Adhesive and Tough ..." refers background in this paper

  • ...for the formation of polydopamine.(18) Note that the oxidative agents often oxidize or crosslink...

    [...]

Journal ArticleDOI
TL;DR: A class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes capable of measuring strains up to 280% with high durability, fast response and low creep is reported.
Abstract: Thin films of single-wall carbon nanotube have been used to create stretchable devices that can be incorporated into clothes and used to detect human motions.

2,790 citations


Additional excerpts

  • ...wound dressing to replace sutures and staples.(20)...

    [...]