scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source.

TL;DR: The results indicate that the discharge of the effluent should be avoided in waters used for human consumption and show the sensitivity of the ACF crypt foci assay as an important tool to evaluate the carcinogenic potential of environmental complex mixtures.
Abstract: Recently a textile azo dye processing plant effluent was identified as one of the sources of mutagenic activity detected in the Cristais River, a drinking water source in Brazil [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589–1597]. Besides presenting high mutagenic activity in the Salmonella /microsome assay, the mutagenic nitro-aminoazobenzenes dyes CI Disperse Blue 373, CI Disperse Violet 93, and CI Disperse Orange 37 [G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55–64] as well as benzidine, a known carcinogenic compound [T.M. Mazzo, A.A. Saczk, G.A. Umbuzeiro, M.V.B. Zanoni, Analysis of aromatic amines in surface waters receiving wastewater from textile industry by liquid chromatographic with eletrochemical detection, Anal. Lett., in press] were found in this effluent. After ∼6 km from the discharge of this effluent, a drinking water treatment plant treats and distributes the water to a population of approximate 60,000. As shown previously, the mutagens in the DWTP intake water are not completely removed by the treatment. The water used for human consumption presented mutagenic activity related to nitro-aromatics and aromatic amines compounds probably derived from the cited textile processing plant effluent discharge [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589–1597; G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55–64]. Therefore, it is important to evaluate the possible risks involved in the human consumption of this contaminated water. With that objective, one sample of the cited industrial effluent was tested for carcinogenicity in the aberrant crypt foci medium-term assay in colon of Wistar rats. The rats received the effluent in natura through drinking water at concentrations of 0.1%, 1%, and 10%. The effluent mutagenicity was also confirmed in the Salmonella /microsome assay with the strains TA98 and YG1041. There was an increased number of preneoplastic lesions in the colon of rats exposed to concentrations of 1% and 10% of the effluent, and a positive response for both Salmonella strains tested. These results indicate that the discharge of the effluent should be avoided in waters used for human consumption and show the sensitivity of the ACF crypt foci assay as an important tool to evaluate the carcinogenic potential of environmental complex mixtures.
Citations
More filters
Journal ArticleDOI
TL;DR: The brominated DBPs were the most genotoxic of all but have not been tested for carcinogenicity and highlighted the emerging importance of dermal/inhalation exposure to the THMs, or possibly other DBPs, and the role of genotype for risk for drinking-water-associated bladder cancer.
Abstract: Disinfection by-products (DBPs) are formed when disinfectants (chlorine, ozone, chlorine dioxide, or chloramines) react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. Here we review 30 years of research on the occurrence, genotoxicity, and carcinogenicity of 85 DBPs, 11 of which are currently regulated by the U.S., and 74 of which are considered emerging DBPs due to their moderate occurrence levels and/or toxicological properties. These 74 include halonitromethanes, iodo-acids and other unregulated halo-acids, iodo-trihalomethanes (THMs), and other unregulated halomethanes, halofuranones (MX [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] and brominated MX DBPs), haloamides, haloacetonitriles, tribromopyrrole, aldehydes, and N-nitrosodimethylamine (NDMA) and other nitrosamines. Alternative disinfection practices result in drinking water from which extracted organic material is less mutagenic than extracts of chlorinated water. However, the levels of many emerging DBPs are increased by alternative disinfectants (primarily ozone or chloramines) compared to chlorination, and many emerging DBPs are more genotoxic than some of the regulated DBPs. Our analysis identified three categories of DBPs of particular interest. Category 1 contains eight DBPs with some or all of the toxicologic characteristics of human carcinogens: four regulated (bromodichloromethane, dichloroacetic acid, dibromoacetic acid, and bromate) and four unregulated DBPs (formaldehyde, acetaldehyde, MX, and NDMA). Categories 2 and 3 contain 43 emerging DBPs that are present at moderate levels (sub- to low-mug/L): category 2 contains 29 of these that are genotoxic (including chloral hydrate and chloroacetaldehyde, which are also a rodent carcinogens); category 3 contains the remaining 14 for which little or no toxicological data are available. In general, the brominated DBPs are both more genotoxic and carcinogenic than are chlorinated compounds, and iodinated DBPs were the most genotoxic of all but have not been tested for carcinogenicity. There were toxicological data gaps for even some of the 11 regulated DBPs, as well as for most of the 74 emerging DBPs. A systematic assessment of DBPs for genotoxicity has been performed for approximately 60 DBPs for DNA damage in mammalian cells and 16 for mutagenicity in Salmonella. A recent epidemiologic study found that much of the risk for bladder cancer associated with drinking water was associated with three factors: THM levels, showering/bathing/swimming (i.e., dermal/inhalation exposure), and genotype (having the GSTT1-1 gene). This finding, along with mechanistic studies, highlights the emerging importance of dermal/inhalation exposure to the THMs, or possibly other DBPs, and the role of genotype for risk for drinking-water-associated bladder cancer. More than 50% of the total organic halogen (TOX) formed by chlorination and more than 50% of the assimilable organic carbon (AOC) formed by ozonation has not been identified chemically. The potential interactions among the 600 identified DBPs in the complex mixture of drinking water to which we are exposed by various routes is not reflected in any of the toxicology studies of individual DBPs. The categories of DBPs described here, the identified data gaps, and the emerging role of dermal/inhalation exposure provide guidance for drinking water and public health research.

2,668 citations

Journal ArticleDOI
TL;DR: In this article, a review focusing on the heterogeneous photocatalytic treatment of organic dyes in air and water is presented, which includes historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H 2 O 2, ozonation, UV/O 3, Fenton and photo-Fenton reactions), visible light-
Abstract: This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO 2 ) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO 3 , and Fe 2 O 3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H 2 O 2 , ozonation, UV/O 3 , Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios.

685 citations

Journal ArticleDOI
TL;DR: The hazard potential of synthetic organic dyes should be assessed, especially their influence on aquatic biota, not least because dyes in water ecosystems may pose a threat to animal or human health as higher-order consumers.

591 citations

Journal ArticleDOI
TL;DR: This work has demonstrated a bottom-up interfacial crystallization strategy to fabricate these microcrystalline powders as large-scale thin films under ambient conditions, allowing simultaneous control over crystallization and morphology of the framework structure.
Abstract: Exponential interest in the field of covalent organic frameworks (COFs) stems from the direct correlation between their modular design principle and various interesting properties. However, existing synthetic approaches to realize this goal mainly result in insoluble and unprocessable powders, which severely restrict their widespread applicability. Therefore, developing a methodology for easy fabrication of these materials remains an alluring goal and a much desired objective. Herein, we have demonstrated a bottom-up interfacial crystallization strategy to fabricate these microcrystalline powders as large-scale thin films under ambient conditions. This unique design principle exploits liquid–liquid interface as a platform, allowing simultaneous control over crystallization and morphology of the framework structure. The thin films are grown without any support in free-standing form and can be transferred onto any desirable substrate. The porous (with Tp-Bpy showing highest SBET of 1 151 m2 g–1) and crystal...

584 citations

Journal ArticleDOI
TL;DR: In this article, the effluent water discharged from the textile industries undergoes various physio-chemical processes such as flocculation, coagulation and ozonation followed by biological treatments for the removal of nitrogen, organics, phosphorous and metal.
Abstract: Textile industry is one of the major industries in the world that provide employment with no required special skills and play a major role in the economy of many countries. There are three different types of fibres used in the manufacture of various textile products: cellulose fibres, protein fibres and synthetic fibres. Each type of fibre is dyed with different types of dyes. Cellulose fibres are dyed using reactive dyes, direct dyes, napthol dyes and indigo dyes. Protein fibres are dyed using acid dyes and lanaset dyes. Synthetic fibres are dyed using disperse dyes, basic dyes and direct dyes. The textile industry utilizes various chemicals and large amount of water during the production process. About 200 L of water are used to produce 1 kg of textile. The water is mainly used for application of chemicals onto the fibres and rinsing of the final products. The waste water produced during this process contains large amount of dyes and chemicals containing trace metals such as Cr, As, Cu and Zn which are capable of harming the environment and human health. The textile waste water can cause haemorrhage, ulceration of skin, nausea, skin irritation and dermatitis. The chemicals present in the water block the sunlight and increase the biological oxygen demand thereby inhibiting photosynthesis and reoxygenation process. The effluent water discharged from the textile industries undergoes various physio-chemical processes such as flocculation, coagulation and ozonation followed by biological treatments for the removal of nitrogen, organics, phosphorous and metal. The whole treatment process involves three steps: primary treatment, secondary treatment and tertiary treatment. The primary treatment involves removal of suspended solids, most of the oil and grease and gritty materials. The secondary treatment is carried out using microorganisms under aerobic or anaerobic conditions and involves the reduction of BOD, phenol and remaining oil in the water and control of color. The tertiary treatment involves the use of electrodialysis, reverse osmosis and ion exchange to remove the final contaminants in the wastewater. The major disadvantages of using the biological process are that the presence of toxic metals in the effluent prevents efficient growth of microorganisms and the process requires a long retention time. The advanced oxidation processes is gaining attention in the recent days due to the ability to treat almost all the solid components in the textile effluents. The photo oxidation of the effluents is carried out using H2O2, combination of H2O2 and UV and Combination of TiO2 and UV. Advanced oxidation process generates low waste and uses hydroxyl radicals (OHA¢Â—) as their main oxidative power. The hydroxyl radicals (OHA¢Â—) are produced by chemical, electrical, mechanical or radiation energy and therefore advanced oxidation processes are classified under chemical, photochemical, catalytic, photocatalytic, mechanical and electrical processes. The effluents treated with advanced oxidation process were found to reduce 70-80% COD when compared to 30-45% reduction in biological treatment.

568 citations


Cites background from "Mutagenic and carcinogenic potentia..."

  • ...[67] detected benzidine, a known carcinogen in a textile effluent which contained disperse orange 37, disperse blue 373 and disperse violet 93 dyes....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Two new tester strains, a frameshift strain and a strain carrying an ochre mutation on a multicopy plasmid (TA102), are added to the standard tester set and two substitutions are made in diagnostic mutagens to eliminate MNNG and 9-aminoacridine.
Abstract: The methods for detecting carcinogens and mutagens with the Salmonella mutagenicity test were described previously (Ames et al., 1975b). The present paper is a revision of the methods. Two new tester strains, a frameshift strain (TA97) and a strain carrying an ochre mutation on a multicopy plasmid (TA102), are added to the standard tester set. TA97 replaces TA1537. TA1535 and TA1538 are removed from the recommended set but can be retained at the option of the investigator. TA98 and TA100 are retained. We discuss other special purpose strains and present some minor changes in procedure, principally in the growth, storage, and preservation of the tester strains. Two substitutions are made in diagnostic mutagens to eliminate MNNG and 9-aminoacridine. Some test modifications are discussed.

7,256 citations

Journal ArticleDOI
TL;DR: A methodological approach is taken which quantitates aberrant dysplastic crypts in the unsectioned murine colon of CF1 mice, which are more sensitive to developing colon tumors, and the usefulness of this observation as a possible measure of neoplastic events is discussed in the animal and human situation.

1,033 citations

Journal ArticleDOI
TL;DR: Examples are presented to support the concept that ACF are preneoplastic lesions and that sequential quantification of their number and growth features in animal colons may provide further insight into the pathogenesis of colon cancer.

582 citations

Journal ArticleDOI
TL;DR: The azoreductase activity in a variety of intestinal preparations was affected by various dietary factors such as cellulose, proteins, fibers, antibiotics, or supplementation with live cultures of lactobacilli.
Abstract: Azo dyes are widely used in the textile, printing, paper manufacturing, pharmaceutical, and food industries and also in research laboratories When these compounds either inadvertently or by design enter the body through ingestion, they are metabolized to aromatic amines by intestinal microorganisms Reductive enzymes in the liver can also catalyze the reductive cleavage of the azo linkage to produce aromatic amines However, evidence indicates that the intestinal microbial azoreductase may be more important than the liver enzymes in azo reduction In this article, we examine the significance of the capacity of intestinal bacteria to reduce azo dyes and the conditions of azo reduction Many azo dyes, such as Acid Yellow, Amaranth, Azodisalicylate, Chicago Sky Blue, Congo Red, Direct Black 38, Direct Blue 6, Direct Blue 15, Direct Brown 95, Fast Yellow, Lithol Red, Methyl Orange, Methyl Red, Methyl Yellow, Naphthalene Fast Orange 2G, Neoprontosil, New Coccine, Orange II, Phenylazo-2-naphthol, Ponceau 3R, Ponceau SX, Red 2G, Red 10B, Salicylazosulphapyridine, Sunset Yellow, Tartrazine, and Trypan Blue, are included in this article A wide variety of anaerobic bacteria isolated from caecal or fecal contents from experimental animals and humans have the ability to cleave the azo linkage(s) to produce aromatic amines Azoreductase(s) catalyze these reactions and have been found to be oxygen sensitive and to require flavins for optimal activity The azoreductase activity in a variety of intestinal preparations was affected by various dietary factors such as cellulose, proteins, fibers, antibiotics, or supplementation with live cultures of lactobacilli

514 citations

Journal Article
TL;DR: Aberrant crypts were identified for the first time in whole-mount preparations of normal-appearing human colonic mucosa after staining with methylene blue and were postulated to be the earliest identifiable potential precursors of colon cancer.
Abstract: Aberrant crypts were identified for the first time in whole-mount preparations of normal-appearing human colonic mucosa after staining with methylene blue. The foci of aberrant crypts varied from single altered glands to plaques of greater than 30 crypts. The mean proportion of colonic mucosa altered and the number of foci with aberrant crypts per cm2 of colonic mucosa were ( a ) higher in patients with colon cancer than in patients without colon cancer or predisposing conditions and ( b ) highest in our single case of Gardner's syndrome. Aberrant crypts are postulated to be the earliest identifiable potential precursors of colon cancer. Analysis of aberrant crypts may facilitate the study of the early pathological and molecular changes that precede colon cancer.

479 citations