scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes

01 Sep 2013-Nature Genetics (Nature Publishing Group)-Vol. 45, Iss: 9, pp 1067-1072
TL;DR: Results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
Abstract: Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fisher's exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fisher's exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Gene discovery provides the basis for neurobiological insights, often showing convergence of mechanistic pathways that underpin the development of targeted therapies, which are essential to improve the outcome of these devastating disorders.
Abstract: Epileptic encephalopathies of infancy and childhood comprise a large, heterogeneous group of severe epilepsies characterised by several seizure types, frequent epileptiform activity on EEG, and developmental slowing or regression. The encephalopathies include many age-related electroclinical syndromes with specific seizure types and EEG features. With the molecular revolution, the number of known monogenic determinants underlying the epileptic encephalopathies has grown rapidly. De-novo dominant mutations are frequently identified; somatic mosaicism and recessive disorders are also seen. Several genes can cause one electroclinical syndrome, and, conversely, one gene might be associated with phenotypic pleiotropy. Diverse genetic causes and molecular pathways have been implicated, involving ion channels, and proteins needed for synaptic, regulatory, and developmental functions. Gene discovery provides the basis for neurobiological insights, often showing convergence of mechanistic pathways. These findings underpin the development of targeted therapies, which are essential to improve the outcome of these devastating disorders.

424 citations

Journal ArticleDOI
TL;DR: The importance of recent genetic findings on the different mechanisms of structural plasticity are discussed and it is proposed that these converge on shared pathways that can be targeted with novel therapeutics.
Abstract: The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.

325 citations

Journal ArticleDOI
TL;DR: Techniques of modern translational medicine are employed to identify a disease‐causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband.
Abstract: Objective Early-onset epileptic encephalopathies have been associated with de novo mutations of numerous ion channel genes. We employed techniques of modern translational medicine to identify a disease-causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband. Methods Three modern translational medicine tools were utilized: (1) high-throughput sequencing technology to identify a novel de novo mutation; (2) in vitro expression and electrophysiology assays to confirm the variant protein's dysfunction; and (3) screening of existing drug libraries to identify potential therapeutic compounds. Results A de novo GRIN2A missense mutation (c.2434C>A; p.L812M) increased the charge transfer mediated by N-methyl-D-aspartate receptors (NMDAs) containing the mutant GluN2A-L812M subunit. In vitro analysis with NMDA receptor blockers indicated that GLuN2A-L812M-containing NMDARs retained their sensitivity to the use-dependent channel blocker memantine; while screening of a previously reported GRIN2A mutation (N615K) with these compounds produced contrasting results. Consistent with these data, adjunct memantine therapy reduced our proband's seizure burden. Interpretation This case exemplifies the potential for personalized genomics and therapeutics to be utilized for the early diagnosis and treatment of infantile-onset neurological disease.

244 citations

Journal ArticleDOI
TL;DR: These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.
Abstract: Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology.

243 citations

Journal ArticleDOI
TL;DR: Improved understanding of the genetics of the epilepsies is confirmed by the positive outcomes, in terms of treatment selection and counselling, of receiving a genetic diagnosis, and a new paradigm for use in the clinic is suggested.
Abstract: Understanding the aetiology of epilepsy is essential both for clinical management of patients and for conducting neurobiological research that will direct future therapies. The aetiology of epilepsy was formerly regarded as unknown in about three-quarters of patients; however, massively parallel gene-sequencing studies, conducted in a framework of international collaboration, have yielded a bounty of discoveries that highlight the importance of gene mutations in the aetiology of epilepsy. These data, coupled with clinical genetic studies, suggest a new paradigm for use in the clinic: many forms of epilepsy are likely to have a genetic basis. Enquiry about a genetic cause of epilepsy is readily overlooked in the clinic for a number of understandable but remediable reasons, not least an incomplete understanding of its genetic architecture. In addition, the importance of de novo mutagenesis is often underappreciated, particularly in the epileptic encephalopathies. Other genomic surprises are worth emphasizing, such as the emerging evidence of a genetic contribution to focal epilepsies-long regarded as acquired conditions-and the complex role of copy number variation. The importance of improved understanding of the genetics of the epilepsies is confirmed by the positive outcomes, in terms of treatment selection and counselling, of receiving a genetic diagnosis.

235 citations

References
More filters
Journal ArticleDOI
TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.
Abstract: To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naive Bayes classifier (Supplementary Methods). Figure 1 PolyPhen-2 pipeline and prediction accuracy. (a) Overview of the algorithm. (b) Receiver operating characteristic (ROC) curves for predictions made by PolyPhen-2 using five-fold cross-validation on HumDiv (red) and HumVar3 (light green). UniRef100 (solid ... We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naive Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging.

11,571 citations

Journal ArticleDOI
TL;DR: The International League Against Epilepsy (ILAE) Commission on Classification and Terminology has revised concepts, terminology, and approaches for classifying seizures and forms of epilepsy.
Abstract: The International League Against Epilepsy (ILAE) Commission on Classification and Terminology has revised concepts, terminology, and approaches for classifying seizures and forms of epilepsy. Generalized and focal are redefined for seizures as occurring in and rapidly engaging bilaterally distributed networks (generalized) and within networks limited to one hemisphere and either discretely localized or more widely distributed (focal). Classification of generalized seizures is simplified. No natural classification for focal seizures exists; focal seizures should be described according to their manifestations (e. g., dyscognitive, focal motor). The concepts of generalized and focal do not apply to electroclinical syndromes. Genetic, structural-metabolic, and unknown represent modified concepts to replace idiopathic, symptomatic, and cryptogenic. Not all epilepsies are recognized as electroclinical syndromes. Organization of forms of epilepsy is first by specificity: electroclinical syndromes, nonsyndromic epilepsies with structural-metabolic causes, and epilepsies of unknown cause. Further organization within these divisions can be accomplished in a flexible manner depending on purpose. Natural classes (e. g., specific underlying cause, age at onset, associated seizure type), or pragmatic groupings (e. g., epileptic encephalopathies, self-limited electroclinical syndromes) may serve as the basis for organizing knowledge about recognized forms of epilepsy and facilitate identification of new forms.

3,775 citations

Journal ArticleDOI
TL;DR: MutationTaster allows the efficient filtering of NGS data for alterations with high disease-causing potential and provides Perl scripts that can process data from all major platforms (Roche 454, Illumina Genome Analyzer and ABI SOLiD).
Abstract: (simple_aae) or at alterations causing complex changes in the amino acid sequence (complex_aae). To train the classifier, we generated a dataset with all available and suitable common polymorphisms and known diseasecausing mutations extracted from common databases and the literature. We cross-validated the classifier five times including all three prediction models and obtained an overall accuracy of 91.1 ± 0.1%. We also compared MutationTaster with similar applications (Panther3, Pmut4, PolyPhen and PolyPhen-2 (ref. 5) and ‘screening for non-acceptable polymorphisms’ (SNAP)6) and analyzed the identical 1,000 disease-linked mutations and 1,000 polymorphisms with all programs. For this comparison, we used only alterations causing single amino acid exchanges. MutationTaster performed best in terms of accuracy and speed (Table 1). A description of all training and validation procedures and detailed statistics are available in Supplementary Methods. MutationTaster can be used via an intuitive web interface to analyze single mutations as well as in batch mode. To streamline and to standardize the analysis of NGS data, we provide Perl scripts that can process data from all major platforms (Roche 454, Illumina Genome Analyzer and ABI SOLiD). MutationTaster hence allows the efficient filtering of NGS data for alterations with high disease-causing potential (see Supplementary Methods for an example). Present limitations of the software comprise its inability to analyze insertion-deletions greater than 12 base pairs and alterations spanning an intron-exon border. Also, analysis of non-exonic alterations is restricted to Kozak consensus sequence, splice sites and poly(A) signal. We will add tests for other sequence motifs in the near future. MutationTaster is available at http://www.mutationtaster.org/.

2,628 citations

Journal ArticleDOI
TL;DR: The results show that considerable economy and efficiency can be brought to the mapping endeavor by resorting to appropriate strategies of detecting linkage and by constructing the human genetic map on a common reference panel of families.
Abstract: The increasing number of DNA polymorphisms characterized in humans will soon allow the construction of fine genetic maps of human chromosomes. This advance calls for a reexamination of current methodologies for linkage analysis by the family method. We have investigated the relative efficiency of two-point and three-point linkage tests for the detection of linkage and the estimation of recombination in a variety of situations. This led us to develop the computer program LINKAGE to perform multilocus linkage analysis. The investigation also enables us to propose a method of location scores for the efficient detection of linkage between a disease locus, or a new genetic marker, and a linkage group previously established from a reference panel of families. The method is illustrated by an application to simulated pedigree data in a situation akin to Duchenne muscular dystrophy. These results show that considerable economy and efficiency can be brought to the mapping endeavor by resorting to appropriate strategies of detecting linkage and by constructing the human genetic map on a common reference panel of families.

2,454 citations

Journal ArticleDOI
TL;DR: Human Splicing Finder is designed, a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence, and it is shown that the mutation effect was correctly predicted in almost all cases.
Abstract: Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

2,300 citations

Related Papers (5)