scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Mutual-reinforcing sonodynamic therapy against Rheumatoid Arthritis based on sparfloxacin sonosensitizer doped concave-cubic rhodium nanozyme.

Wen Li1, Yilin Song1, Xiaoyang Liang1, Yue Zhou1, Min Xu1, Qiang Lu1, Xinxing Wang, Nan Li1 •
09 Aug 2021-Biomaterials (Elsevier)-Vol. 276, pp 121063
TL;DR: Wang et al. as mentioned in this paper developed a sonosensitizer spafloxacin (SPX) doped and human serum albumin (HSA) loaded concave-cubic rhodium (Rh) nanozyme to realize mutual-reinforcing sonodynamic therapy during ultrasonic activation.
About: This article is published in Biomaterials.The article was published on 2021-08-09. It has received 34 citations till now. The article focuses on the topics: Sonodynamic therapy.
Citations
More filters
Journal Article•DOI•
TL;DR: Wang et al. as discussed by the authors systematically introduced the unique features, constitutes of the RAM, and emphasized the key role of the vicious circle of reactive oxygen and nitrogen species (RONS) and inflammatory factors in the RA progress.

48 citations

Journal Article•DOI•
TL;DR: This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosenitizers, image-guided assistedSDT, improvement of hypoxia and combination of SDT with other therapies.
Abstract: The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.

20 citations

Journal Article•DOI•
11 Mar 2022-ACS Nano
TL;DR: Overall, SP retained a weak chemotherapeutic effect, achieved enhanced photosensitizer-like effects, and was able to repurpose old drugs to elevate the therapeutic efficacy against cancer, increase the specificity for suppressing tumor migration and proliferation, and enhance apoptosis.
Abstract: In this work, a fluoroquinolone antibiotic drug (sparfloxacin (SP)) was selected as a chemotherapy drug and photosensitizer for combined therapy. A facile chemical process was developed to incorporate SP and upconversion nanoparticles (UCNPs) into the thermally sensitive amphiphilic polymer polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane). In vitro and in vivo experiments showed that 60% of the SP molecules can be released from the micelles of thermal-sensitive polymers using a 1 W cm-2 980 nm laser, and this successfully inhibits cell migration and metastasis by inhibiting type II topoisomerases in nuclei. Additionally, intracellular metal ions were chelated by SP to induce cancer cell apoptosis by decreasing the activity of superoxide dismutase and catalase. In particular, the fluoroquinolone molecules produced singlet oxygen (1O2) to kill cancer cells, and this was triggered by UCNPs when irradiation was performed with a 980 nm laser. Overall, SP retained a weak chemotherapeutic effect, achieved enhanced photosensitizer-like effects, and was able to repurpose old drugs to elevate the therapeutic efficacy against cancer, increase the specificity for suppressing tumor migration and proliferation, and enhance apoptosis.

15 citations

Journal Article•DOI•
TL;DR: In this article , the authors present a detailed pathogenesis of RA, with an emphasis on the emerging advances in regulating seeds or remodeling soils for RA treatment, and outline these intelligent therapeutics via synergistic seed-soil adjustment, particularly for spatiotemporally cascaderesponsive or all-in-one integrational nanosystems.

9 citations

Journal Article•DOI•
18 Sep 2022-Small
TL;DR: Animal experiments reveal that the treatment of combining oral hydrogel (chitosan/alginate)-embedding CS-ID@NMs and immune checkpoint inhibitors can simultaneously suppress the growth of primary and distal tumors through direct killing, reversion of immunosuppressive TME, and potentiation of systemic anti-tumor immunity, demonstrating that the CS- ID@NM-based platform is a robust oral system for synergistic treatment of colon cancer.
Abstract: The therapeutic outcomes of oral nanomedicines against colon cancer are heavily compromised by their lack of specific penetration into the internal tumor, favorable anti-tumor activity, and activation of anti-tumor immunity. Herein, hydrogen peroxide (H2 O2 )/ultrasound (US)-driven mesoporous manganese oxide (MnOx )-based nanomotors are constructed by loading mitochondrial sonosensitizers into their mesoporous channels and orderly dual-functionalizing their surface with silk fibroin and chondroitin sulfate. The locomotory activities and tumor-targeting capacities of the resultant nanomotors (CS-ID@NMs) are greatly improved in the presence of H2 O2 and US irradiation, inducing efficient mucus-traversing and deep tumor penetration. The excess H2 O2 in the tumor microenvironment (TME) is decomposed into hydroxyl radicals and oxygen by an Mn2+ -mediated Fenton-like reaction, and the produced oxygen participates in sonodynamic therapy (SDT), yielding abundant singlet oxygen. The combined Mn2+ -mediated chemodynamic therapy and SDT cause effective ferropotosis of tumor cells and accelerate the release of tumor antigens. Importantly, animal experiments reveal that the treatment of combining oral hydrogel (chitosan/alginate)-embedding CS-ID@NMs and immune checkpoint inhibitors can simultaneously suppress the growth of primary and distal tumors through direct killing, reversion of immunosuppressive TME, and potentiation of systemic anti-tumor immunity, demonstrating that the CS-ID@NM-based platform is a robust oral system for synergistic treatment of colon cancer.

9 citations

References
More filters
Journal Article•DOI•
TL;DR: The increased understanding of the immune mechanisms of rheumatoid arthritis has led to the development of a considerable number of new therapeutic agents that alter the natural history of the disease and reduce mortality.
Abstract: The increased understanding of the immune mechanisms of rheumatoid arthritis has led to the development of a considerable number of new therapeutic agents that alter the natural history of the disease and reduce mortality.

3,975 citations

Journal Article•DOI•
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal Article•DOI•
TL;DR: Guidelines and recommendations developed and/or endorsed by the American College of Rheumatology are intended to provide guidance for particular patterns of practice and not to dictate the care of a particular patient.
Abstract: Guidelines and recommendations developed and/or endorsed by the American College of Rheumatology (ACR) are intended to provide guidance for particular patterns of practice and not to dictate the care of a particular patient. The ACR considers adherence to these guidelines and recommendations to be voluntary, with the ultimate determination regarding their application to be made by the physician in light of each patient’s individual circumstances. Guidelines and recommendations are intended to promote beneficial or desirable outcomes but cannot guarantee any specific outcome. Guidelines and recommendations developed or endorsed by the ACR are subject to periodic revision as warranted by the evolution of medical knowledge, technology, and practice.

1,447 citations

Journal Article•DOI•
TL;DR: Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage, and new agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.
Abstract: Rheumatoid arthritis (RA) remains a significant unmet medical need despite significant therapeutic advances. The pathogenesis of RA is complex and includes many cell types, including T cells, B cells, and macrophages. Fibroblast-like synoviocytes (FLS) in the synovial intimal lining also play a key role by producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction. Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage. Recent advances in understanding the biology of FLS, including their regulation regulate innate immune responses and activation of intracellular signaling mechanisms that control their behavior, provide novel insights into disease mechanisms. New agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.

1,444 citations

Journal Article•DOI•
TL;DR: Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophor-based pac litaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport.
Abstract: ABI-007, an albumin-bound, 130-nm particle form of paclitaxel, was developed to avoid Cremophor/ethanol-associated toxicities in Cremophor-based paclitaxel (Taxol) and to exploit albumin receptor-mediated endothelial transport. We studied the antitumor activity, intratumoral paclitaxel accumulation, and endothelial transport for ABI-007 and Cremophor-based paclitaxel. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts [lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29)] treated with ABI-007 or Cremophor-based paclitaxel. Intratumoral paclitaxel concentrations (MX-1-tumored mice) were compared for radiolabeled ABI-007 and Cremophor-based paclitaxel. In vitro endothelial transcytosis and Cremophor inhibition of paclitaxel binding to cells and albumin was compared for ABI-007 and Cremophor-based paclitaxel. Both ABI-007 and Cremophor-based paclitaxel caused tumor regression and prolonged survival; the order of sensitivity was lung > breast congruent with ovary > prostate > colon. The LD(50) and maximum tolerated dose for ABI-007 and Cremophor-based paclitaxel were 47 and 30 mg/kg/d and 30 and 13.4 mg/kg/d, respectively. At equitoxic dose, the ABI-007-treated groups showed more complete regressions, longer time to recurrence, longer doubling time, and prolonged survival. At equal dose, tumor paclitaxel area under the curve was 33% higher for ABI-007 versus Cremophor-based paclitaxel, indicating more effective intratumoral accumulation of ABI-007. Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophor-based paclitaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport. In addition, Cremophor was found to inhibit binding of paclitaxel to endothelial cells and albumin. Enhanced endothelial cell binding and transcytosis for ABI-007 and inhibition by Cremophor in Cremophor-based paclitaxel may account in part for the greater efficacy and intratumor delivery of ABI-007.

1,062 citations