scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle.

01 Oct 1970-Physiological Reviews (Physiol Rev)-Vol. 50, Iss: 4, pp 559-636
About: This article is published in Physiological Reviews.The article was published on 1970-10-01. It has received 534 citations till now. The article focuses on the topics: Myoglobin.
Citations
More filters
Journal ArticleDOI
TL;DR: The nonexponential rebinding observed at low temperatures and in solid samples implies that the innermost barrier has a spectrum of activation energies, similar to how myoglobin achieves specificity and order.
Abstract: Myoglobin rebinding of carbon monoxide and dioxygen after photodissociation has been observed in the temperature range between 40 and 350 K. A system was constructed that records the change in optical absorption at 436 nm smoothly and without break between 2 musec and 1 ksec. Four different rebinding processes have been found. Between 40 and 160 K, a single process is observed. It is not exponential in time, but approximately given by N(t) = (1 + t/to)-n, where to and n are temperature-dependent, ligand-concentration independent, parameters. At about 170 K, a second and at 200 K, a third concentration-independent process emerge. At 210 K, a concentration-dependent process sets in. If myoglobin is embedded in a solid, only the first three can be seen, and they are all nonexponential. In a liquid glycerol-water solvent, rebinding is exponential. To interpret the data, a model is proposed in which the ligand molecule, on its way from the solvent to the binding site at the ferrous heme iron, encounters four barriers in succession. The barriers are tentatively identified with known features of myoglobin. By computer-solving the differential equation for the motion of a ligand molecule over four barriers, the rates for all important steps are obtained. The temperature dependences of the rates yield enthalpy, entropy, and free-energy changes at all barriers. The free-energy barriers at 310 K indicate how myoglobin achieves specificity and order. For carbon monoxide, the heights of these barriers increase toward the inside; carbon monoxide consequently is partially rejected at each of the four barriers. Dioxygen, in contrast, sees barriers of about equal height and moves smoothly toward the binding site. The entropy increases over the first two barriers, indicating a rupturing of bonds or displacement of residues, and then smoothly decreases, reaching a minimum at the binding site. The magnitude of the decrease over the innermost barrier implies participation of heme and/or protein. The nonexponential rebinding observed at low temperatures and in solid samples implies that the innermost barrier has a spectrum of activation energies. The shape of the spectrum has been determined; its existence can be explained by assuming the presence of many conformational states for myoglobin. In a liquid at temperatures above about 230 K, relaxation among conformational states occurs and rebinding becomes exponential.

1,448 citations

OtherDOI
TL;DR: The sections in this article are: Motor Unit Types: Histochemical Profiles and Ultrastructural Correlations, Anatomical Considerations, and Control of Muscular Action: Recruitment and Rate Modulation.
Abstract: The sections in this article are: 1 Motor Unit Types 1.1 Muscle Fiber Types: Histochemical Profiles and Ultrastructural Correlations 1.2 Motor Unit Types: Physiological Profiles in Experimental Animals 1.3 Motor Units in Human Muscle 1.4 Stability of Motor Unit Types 1.5 Developmental Considerations 1.6 Skeletofusimotor Units 2 Anatomical Considerations 2.1 Anatomy of Muscle Units 2.2 Anatomy of Motor Nuclei 2.3 Motoneuron Anatomy in Relation to Unit Type 2.4 Electrophysiological Properties Intrinsic to Motoneurons 2.5 Organization of Synaptic Input 2.6 Control of Motoneuron Excitability: Interactive Factors 3 Control of Muscular Action: Recruitment and Rate Modulation 3.1 Motor Unit Recruitment 3.2 Precision and Stereotypy in Recruitment Process 3.3 Output Modulation by Rate and Pattern of Motoneuron Firing 3.4 Recruitment or Rate and Pattern Modulation? 4 Summary and Concluding Comments

711 citations

Journal ArticleDOI
TL;DR: This description of some of the present knowledge on skeletal muscle fibers, their metabolic potentials, and their interplay with the degree of physical activity has revealed that skeletal muscle of man has a very large capacity for adaptation.
Abstract: This description of some of the present knowledge on skeletal muscle fibers, their metabolic potentials, and their interplay with the degree of physical activity has revealed that skeletal muscle of man has a very large capacity for adaptation. Moreover, this adaptability appears to be of utmost importance for the metabolic response as well as for performance. Although all this is true, it should not distract us from the fact that we are lacking the most important information. The questions that need to be answered are: What triggers the changes to take place? Which are the regulatory mechanisms?

647 citations

Journal ArticleDOI
TL;DR: The Hb/Mb resaturation times provide a noninvasive localized indication of the degree of O2 delivery stress as evoked by rowing ergometry and may provide directions for localized muscle power output improvement for particular individuals in rowing competitions.
Abstract: A simple muscle tissue spectrophotometer is adapted to measure the recovery time (TR) for hemoglobin/myoglobin (Hb/Mb) desaturation in the capillary bed of exercising muscle, termed a deoxygenation meter. The use of the instrument for measuring the extent of deoxygenation is presented, but the use of TR avoids difficulties of quantifying Hb/Mb saturation changes. The TR reflects the balance of oxygen delivery and oxygen demand in the localized muscles of the quadriceps following work near maximum voluntary contraction (MVC) in elite male and female rowers (a total of 22) on two occasions, 1 yr apart. TR ranged from 10 to 80 s and was interpreted as a measure of the time for repayment of oxygen and energy deficits accumulated during intense exercise by tissue respiration under ADP control. The Hb/Mb resaturation times provide a noninvasive localized indication of the degree of O2 delivery stress as evoked by rowing ergometry and may provide directions for localized muscle power output improvement for particular individuals in rowing competitions.

542 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrating the transport aspects of the CK reaction emphasize only one feature of a more general notion of facilitated diffusion by near-equilibrium metabolic reactions and do not per se establish the existence of any physical or functional compartmentation of ATP, ADP, PCr, or creatine.
Abstract: The diffusive mobility of solutes chemically connected by reversible reactions in cells is analyzed as a problem of facilitated diffusion. By this term we mean that the diffusive flux of any substance, X, which is in one metabolic pathway, is effectively increased when it participates in a second and equilibrium reaction with another substance Y because the total flux of X in the pathway is the sum of the fluxes of X and Y. This notion is generalized and is seen to include the familiar enhanced intracellular diffusion of oxygen by oxymyoglobin. In this framework the function of creatine kinase (CK) is seen to have two aspects: 1) phosphocreatine (PCr) via the CK reaction buffers the cellular ATP and ADP concentrations and 2) transport of high-energy phosphates is predominantly in the chemical form of PCr. This predominance of PCr is a consequence of the maintained ATP, ADP, and total creatine levels and of the apparent equilibrium constant of the reaction. Thus experimental results demonstrating the transport aspects of the CK reaction emphasize only one feature of a more general notion of facilitated diffusion by near-equilibrium metabolic reactions and do not per se establish the existence of any physical or functional compartmentation of ATP, ADP, PCr, or creatine. PCr can be a large source for increasing inorganic phosphate levels during contractile activity, possibly as a metabolic regulator. Neither the transport nor buffer aspects can be quantitatively important in cells with small distances between ATP-utilizing and ATP-generating sites, such as is the case with cardiac myofibrils and mitochondria.

497 citations