scispace - formally typeset
Search or ask a question
Journal ArticleDOI

N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light

01 Apr 2016-Carbon (Pergamon)-Vol. 99, Iss: 99, pp 111-117
TL;DR: In this paper, a facile one-pot strategy was proposed to synthesize N-doped graphitic carbon-incorporated g-C 3 N 4 by adding a slight amount of citric acid into urea as the precursor during thermal polymerization.
About: This article is published in Carbon.The article was published on 2016-04-01. It has received 311 citations till now. The article focuses on the topics: Photocatalysis & Visible spectrum.
Citations
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: This unique plane heterostructural carbon ring (Cring)-C3N4 nanosheet can synchronously expedite electron-hole pair separation and promote photoelectron transport through the local in-plane π-conjugated electric field, synergistically elongating the photocarrier diffusion length and lifetime by 10 times relative to those achieved with pristine g-C 3N4.
Abstract: Direct and efficient photocatalytic water splitting is critical for sustainable conversion and storage of renewable solar energy. Here, we propose a conceptual design of two-dimensional C3N4-based in-plane heterostructure to achieve fast spatial transfer of photoexcited electrons for realizing highly efficient and spontaneous overall water splitting. This unique plane heterostructural carbon ring (Cring)–C3N4 nanosheet can synchronously expedite electron–hole pair separation and promote photoelectron transport through the local in-plane π-conjugated electric field, synergistically elongating the photocarrier diffusion length and lifetime by 10 times relative to those achieved with pristine g-C3N4. As a result, the in-plane (Cring)–C3N4 heterostructure could efficiently split pure water under light irradiation with prominent H2 production rate up to 371 μmol g–1 h–1 and a notable quantum yield of 5% at 420 nm.

587 citations

Journal ArticleDOI
TL;DR: In this article, a review of photo-catalysts, fabrication of novel heterojunction constructions and factors influencing the photocatalytic process for dynamic H2 production have been discussed.

506 citations

Journal ArticleDOI
TL;DR: In this article, defect-modified g-C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported.
Abstract: Graphitic carbon nitride (g-C3N4) has recently emerged as an attractive photocatalyst for solar energy conversion. However, the photocatalytic activities of g-C3N4 remain moderate because of the insufficient solar-light absorption and the fast electron–hole recombination. Here, defect-modified g-C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported. More importantly, cyano terminal CN groups, acting as electron acceptors, are introduced into the DCN sheet edge, which endows the DCN with both n- and p-type conductivities, consequently giving rise to the generation of p–n homojunctions. This homojunction structure is demonstrated to be highly efficient in charge transfer and separation, and results in a fivefold enhanced photocatalytic H2 evolution activity. The findings deepen the understanding on the defect-related issues of g-C3N4-based materials. Additionally, the ability to build homojunction structures by the defect-induced self-functionalization presents a promising strategy to realize precise band engineering of g-C3N4 and related polymer semiconductors for more efficient solar energy conversion applications.

497 citations

References
More filters
Journal ArticleDOI
27 Feb 2015-Science
TL;DR: The design and fabrication of a metal-free carbon nanodot–carbon nitride (C3N4) nanocomposite is reported and its impressive performance for photocatalytic solar water splitting is demonstrated.
Abstract: The use of solar energy to produce molecular hydrogen and oxygen (H2 and O2) from overall water splitting is a promising means of renewable energy storage. In the past 40 years, various inorganic and organic systems have been developed as photocatalysts for water splitting driven by visible light. These photocatalysts, however, still suffer from low quantum efficiency and/or poor stability. We report the design and fabrication of a metal-free carbon nanodot-carbon nitride (C3N4) nanocomposite and demonstrate its impressive performance for photocatalytic solar water splitting. We measured quantum efficiencies of 16% for wavelength λ = 420 ± 20 nanometers, 6.29% for λ = 580 ± 15 nanometers, and 4.42% for λ = 600 ± 10 nanometers, and determined an overall solar energy conversion efficiency of 2.0%. The catalyst comprises low-cost, Earth-abundant, environmentally friendly materials and shows excellent stability.

3,553 citations

Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations


"N-doped graphitic carbon-incorporat..." refers background in this paper

  • ...7 eV) and simple preparations, are extremely favorable for practical applications in photocatalysis [10,11]....

    [...]

Journal ArticleDOI
TL;DR: The "polymer chemistry" of g-C(3)N(4) is described, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst.
Abstract: Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.

2,735 citations

Journal ArticleDOI
TL;DR: Graphitic carbon nitride nanosheets are extracted via simple liquid-phase exfoliation of a layered bulk material, g-C3N4, to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.
Abstract: Graphitic carbon nitride nanosheets are extracted, produced via simple liquid-phase exfoliation of a layered bulk material, g-C3N4. The resulting nanosheets, having ≈2 nm thickness and N/C atomic ratio of 1.31, show an optical bandgap of 2.65 eV. The carbon nitride nanosheets are demonstrated to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.

2,137 citations

Journal ArticleDOI
TL;DR: This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting.
Abstract: Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.

1,990 citations


Additional excerpts

  • ...Significant progresses have recently been made in the discovery and design of optimized geC3N4ebased photocatalysts by band engineering [12,13], micro-/nano-structure construction [14,15], bionic synthesis [16], co-catalyst combination [17], surface/ interface modification [18], etc....

    [...]