scispace - formally typeset
Search or ask a question
Journal ArticleDOI

N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO.

TL;DR: FTO exhibits efficient oxidative demethylation activity of abundant N6-methyladenosine (m6A) residues in RNA in vitro, and it is shown that FTO partially colocalizes with nuclear speckles, supporting m6A in nuclear RNA as a physiological substrate of FTO.
Abstract: We report here that fat mass and obesity-associated protein (FTO) has efficient oxidative demethylation activity targeting the abundant N6-methyladenosine (m(6)A) residues in RNA in vitro. FTO knockdown with siRNA led to increased amounts of m(6)A in mRNA, whereas overexpression of FTO resulted in decreased amounts of m(6)A in human cells. We further show the partial colocalization of FTO with nuclear speckles, which supports the notion that m(6)A in nuclear RNA is a major physiological substrate of FTO.
Citations
More filters
Journal ArticleDOI
10 May 2012-Nature
TL;DR: The findings suggest that RNA decoration by m6A has a fundamental role in regulation of gene expression, and a subset of stimulus-dependent, dynamically modulated sites is identified.
Abstract: An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N(6)-methyladenosine (m(6)A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m(6)A modification landscape in a transcriptome-wide manner, using a novel approach, m(6)A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m(6)A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks--around stop codons and within long internal exons--and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m(6)A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m(6)A has a fundamental role in regulation of gene expression.

3,237 citations

Journal ArticleDOI
22 Jun 2012-Cell
TL;DR: A method is presented for transcriptome-wide m(6)A localization, which combines m( 6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq) and reveals insights into the epigenetic regulation of the mammalian transcriptome.

2,839 citations


Cites background or methods or result from "N6-methyladenosine in nuclear RNA i..."

  • ...For these experiments, we used a previously described anti-m6A antibody (Bringmann and Lühr- mann, 1987; Jia et al., 2011; Munns et al., 1977)....

    [...]

  • ...Consistent with the findings of Jia et al. (2011), we observed that FTO decreasedm6A levels when overexpressed in mamma- lian cells (Figure 3B)....

    [...]

  • ...Previous studies have found that m6A exists in RNA from a variety of unique organisms, including viruses, yeast, and mammals (Beemon and Keith, 1977; Bodi et al., 2010). m6A is found in tRNA (Saneyoshi et al., 1969), rRNA (Iwanami and Brown, 1968), and viral RNA (Beemon and Keith, 1977; Dimock and…...

    [...]

  • ...Thus, the physiologically relevant targets of FTO were unclear until recent studies that showed that FTO can demethylate N6-methyladenosine (m6A), a naturally occurring adenosine modification (Jia et al., 2011)....

    [...]

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: It is shown that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) ‘reader’ protein to regulate mRNA degradation and established the role of YTH DF2 in RNA metabolism, showing that binding of Y THDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies.
Abstract: N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.

2,699 citations

Journal ArticleDOI
TL;DR: The discovery of ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo strongly suggests that the reversible m( 6)A modification has fundamental and broad functions in mammalian cells.

2,274 citations


Cites background or methods or result from "N6-methyladenosine in nuclear RNA i..."

  • ...Thus, the discovery and characterization of this second RNA demethylase, in addition to FTO, have significant implications; it shows that the reversible m6A modification in mammalian mRNA plays broad and critical roles in fundamental biological processes....

    [...]

  • ...Given that m(6)A is one of the most common modifications on mRNA and our discovery of FTO as an m(6)A demethylase (Jia et al., 2011), we asked if ALKBH5 could demethylate m(6)A on mRNA inside mammalian cells....

    [...]

  • ...To verify the observed demethylation activity inside cells, ALKBH5 was knocked down by siRNA in HeLa cells, and the relative level of m6A in total mRNA was quantified by LC-MS/MS following the published procedure (Jia et al., 2011)....

    [...]

  • ...The results showed that ALKBH5 demethylates the m6A-containing ssRNA with an activity comparable to FTO (Jia et al., 2011) (Figure 1D and Table S1)....

    [...]

  • ...We therefore asked if there are RNA demethylases among these proteins other than FTO....

    [...]

Journal ArticleDOI
04 Jun 2015-Cell
TL;DR: In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereasYTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m( 6)A.

2,179 citations

References
More filters
Journal ArticleDOI
11 May 2007-Science
TL;DR: A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI).
Abstract: Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes-susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.

4,184 citations

Journal ArticleDOI
01 Jun 2007-Science
TL;DR: The number of T2D loci now confidently identified to at least 10 is confirmed, and it is confirmed that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T1D risk.
Abstract: Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.

2,750 citations

Journal ArticleDOI
TL;DR: It is concluded that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.
Abstract: The authors identified a set of SNPs in the first intron of the FTO (fat mass and obesity associated) gene on chromosome 16q12.2 that is consistently strongly associated with early-onset and severe obesity in both adults and children of European ancestry with an experiment-wise P value of 1.67 x 10(-26) in 2,900 affected individuals and 5,100 controls. The at-risk haplotype yields a proportion of attributable risk of 22% for common obesity. They conclude that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.

1,507 citations

Journal ArticleDOI
30 Nov 2007-Science
TL;DR: It is found that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide.
Abstract: Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.

1,369 citations

Journal ArticleDOI
TL;DR: In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 × 10−7 and included previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.
Abstract: Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 x 10(-7). This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.

1,340 citations

Related Papers (5)