scispace - formally typeset
Search or ask a question
Journal ArticleDOI

NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites

01 Oct 2017-Nano Energy (Elsevier)-Vol. 40, pp 587-595
TL;DR: In this article, a trilayered architecture composites comprised of two outer layers of 2D NN platelets dispersed in a poly(vinylidene fluoride) (PVDF) matrix to provide high dielectric constant and a middle layer of pristine PVDF to offer high breakdown strength.
About: This article is published in Nano Energy.The article was published on 2017-10-01. It has received 229 citations till now. The article focuses on the topics: Composite number & Power density.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.

941 citations

Journal ArticleDOI
TL;DR: This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications, along with an overview of existing challenges and practical limitations.
Abstract: This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.

479 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the latest research on one-dimensional and quasi-1D fillers based high-k polymer nanocomposites with the focus on the superiority of 1D or quasi-one-dimensional highk fillers in enhancing the dielectric properties and energy storage capability of polymer composites.

357 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an innovative strategy to improve the energy storage properties of NaNbO3 lead-free ceramics by the addition of Bi2O3.
Abstract: This study presents an innovative strategy to improve the energy storage properties of NaNbO3 lead-free ceramics by the addition of Bi2O3. The introduction of Bi2O3 can effectively increase the breakdown strength and decrease the remnant polarization of NaNbO3 ceramics. Meanwhile, hybridization between the O2− 2p and Bi3+ 6p orbitals can enhance the polarization. The novel NaNbO3-based (Na0.7Bi0.1NbO3) ceramics demonstrate ultrahigh energy storage efficiency of 85.4% and remarkably high energy storage density (4.03 J cm−3) at 250 kV cm−1 simultaneously, which are superior to the results of almost all recently reported lead-free alternatives. The outstanding stability of energy storage characteristics in terms of frequency (1–1000 Hz), temperature (20–120 °C) and fatigue (cycle number: 105) is also observed in Na0.7Bi0.1NbO3 ceramics. Furthermore, additional pulsed charge–discharge measurements for Na0.7Bi0.1NbO3 ceramics are also carried out to evaluate actual operation performance. The Na0.7Bi0.1NbO3 ceramics exhibit extremely high power density (62.5 MW cm−3) and current density (1250 A cm−2) and release all stored energy rapidly (∼155 ns) under various electric fields and temperatures. These properties qualify these environment-friendly Na0.7Bi0.1NbO3 ceramics as innovative and most promising alternatives for energy storage applications, especially for high power and pulsed power system applications.

322 citations

Journal ArticleDOI
TL;DR: In this paper, an artificial nano-composite with excellent comprehensive performance by controlling the orientation of one-dimensional (1D) 0.5Ba(Zr0.7Ca0.2Ti0.3)TiO3 nanofibers (BZCT NFs) and adjusting the interaction between BZCTNFs and poly(vinylidene fluoride) (PVDF) matrix via SiO2 buffer layer was proposed.

279 citations

References
More filters
Journal ArticleDOI
TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Abstract: Graphene devices on standard SiO(2) substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. Although suspending the graphene above the substrate leads to a substantial improvement in device quality, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2). These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.

6,261 citations

Journal ArticleDOI
21 Jul 2006-Science
TL;DR: It is demonstrated that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants.
Abstract: Dielectric polymers with high dipole density have the potential to achieve very high energy density, which is required in many modern electronics and electric systems. We demonstrate that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers. This is achieved by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants, to avoid the electric displacement saturation at electric fields well below the breakdown field. The results indicate that a very high dielectric constant may not be desirable to reach a very high energy density.

2,008 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the important role and challenges of high-k polymer-matrix composites (PMC) in new technologies and discuss potential applications of highk PMC.

1,412 citations

Journal ArticleDOI
30 Jul 2015-Nature
TL;DR: Crosslinked polymer nanocomposites that contain boron nitride nanosheets have outstanding high-voltage capacitive energy storage capabilities at record temperatures and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles, enabling broader applications of organic materials in high-temperature electronics and energy storage devices.
Abstract: Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

1,324 citations

Journal ArticleDOI
TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Abstract: Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers...

1,143 citations