scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nano-biocomposites: Biodegradable polyester/nanoclay systems

01 Feb 2009-Progress in Polymer Science (Pergamon)-Vol. 34, Iss: 2, pp 125-155
TL;DR: In the recent years, bio-based products have raised great interest since sustainable development policies tend to expand with the decreasing reserve of fossil fuel and the growing concern for the environment.
About: This article is published in Progress in Polymer Science.The article was published on 2009-02-01. It has received 904 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The main purpose of this review is to elaborate the mechanical and physical properties that affect PLA stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements.

1,557 citations

Journal ArticleDOI
TL;DR: The most promising nanoscale fillers are layered silicate nanoclays such as montmorillonite and kaolinite as mentioned in this paper, which can provide active and/or smart properties to food packaging systems.

1,461 citations


Cites background from "Nano-biocomposites: Biodegradable p..."

  • ..., and microbial polysaccharides, such as pullulan and curdlan [12,15]....

    [...]

Journal ArticleDOI
TL;DR: The use of natural and/or biodegradable plasticizers, with low toxicity and good compatibility with several plastics, resins, rubber and elastomers in substitution of conventional plasticizers attracted the market along with the increasing worldwide trend towards use of biopolymers.

1,417 citations


Cites background from "Nano-biocomposites: Biodegradable p..."

  • ...These are added to enhance film flexibility, decrease brittleness and avoid shrinking during handling and storage [30,55,57]....

    [...]

01 Jun 2016
TL;DR: In this paper, the main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements.
Abstract: Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.

1,360 citations

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper highlights the main researches and developments in polylactide-based nanocomposites during this last decade, highlighting the main applications of PLA in automotive and electronics.

962 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations

Journal ArticleDOI
TL;DR: In this article, a literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA), with an orthorhombic unit cell.
Abstract: A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.

3,242 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material.
Abstract: Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food.

2,803 citations

Journal ArticleDOI
TL;DR: A review of polymer blends and composites from renewable resources can be found in this article, where the progress of blends from three kinds of polymers from renewable sources (i.e., natural polymers such as starch, protein and cellulose), synthetic polymers, such as polylactic acid and polyhydroxybutyrate, are described with an emphasis on potential applications.

1,931 citations

Journal ArticleDOI
TL;DR: An overview of the different PHA biosynthetic systems and their genetic background is provided, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
Abstract: Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.

1,540 citations