scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nano-opto-mechanical actuator driven by gradient optical force

05 Jan 2012-Applied Physics Letters (American Institute of Physics)-Vol. 100, Iss: 1, pp 013108
TL;DR: In this paper, a nanoscale opto-mechanical actuator driven by gradient optical force is designed and demonstrated, which can achieve a maximum displacement of 67 nm with a response time of 94.5 nm.
Abstract: In this letter, a nanoscale opto-mechanical actuator driven by gradient optical force is designed and demonstrated. The nanoscale actuator can achieve a maximum displacement of 67 nm with a response time of 94.5 ns. The optical force is estimated as 1.01 pN/μm/mW in C-band operating wavelengths. The device is fabricated on silicon-on-insulator wafer using standard dry etching processes. Compared with traditional microelectromechanical systems actuators driven by electrostatic force, the nanoscale opto-mechanical actuator has the advantages of high resolution of actuation, nanoscale displacement, and fast operating speed. It has potential applications in optical signal processing, chemical, and biological sensing.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metammaterial elements are reviewed.
Abstract: This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies.

284 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optOMEchanical systems for sensing applications, and discuss the noise arising from various sources.
Abstract: The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical microcavity research, that we are able to manipulate and utilize this coupling process. When a high Q microcavity couples to a mechanical resonator, they can consolidate into an optomechanical system. Benefitting from the unique characteristics offered by optomechanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.

78 citations

Journal ArticleDOI
04 Feb 2013-ACS Nano
TL;DR: This paper studies the nonlinear behavior of a nano-optomechanical actuator, consisting of a free-standing arc in a ring resonator that is coupled to a bus waveguide through evanescent waves, which achieves a maximal deflection of 43.1 nm.
Abstract: This paper studies the nonlinear behavior of a nano-optomechanical actuator, consisting of a free-standing arc in a ring resonator that is coupled to a bus waveguide through evanescent waves. The arc deflects when a control light of a fixed wavelength and optical power is pumped into the bus waveguide, while the amount of deflection is monitored by measuring the transmission spectrum of a broadband probe light. This nanoactuator achieves a maximal deflection of 43.1 nm, with a resolution of 0.28 nm. The optical force is a nonlinear function of the deflection of the arc, leading to pull-back instability when the control light is red-tuned. This instability is studied by a combination of experiment and modeling. Potential applications of the nanoactuator include bio-nanomotor, optical switches, and optomechanical memories.

75 citations

Journal ArticleDOI
TL;DR: The calculation on realistic metal-dielectric multilayer structures indicates that the predicted giant optical forces are achievable in experiments, which will open the door for various optomechanical applications in nanoscale, such as optical nanoelectromechanical systems, optical sensors and actuators.
Abstract: Here we demonstrate that giant transverse optical forces can be generated in nanoscale slot waveguides of hyperbolic metamaterials, with more than two orders of magnitude stronger compared to the force created in conventional silicon slot waveguides, due to the nanoscale optical field enhancement and the extreme optical energy compression within the air slot region. Both numerical simulation and analytical treatment are carried out to study the dependence of the optical forces on the waveguide geometries and the metamaterial permittivity tensors, including the attractive optical forces for the symmetric modes and the repulsive optical forces for the anti-symmetric modes. The significantly enhanced transverse optical forces result from the strong optical mode coupling strength between two metamaterial waveguides, which can be explained with an explicit relation derived from the coupled mode theory. Moreover, the calculation on realistic metal-dielectric multilayer structures indicates that the predicted giant optical forces are achievable in experiments, which will open the door for various optomechanical applications in nanoscale, such as optical nanoelectromechanical systems, optical sensors and actuators.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces, and discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.
Abstract: Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.

41 citations

References
More filters
Journal ArticleDOI
Arthur Ashkin1
TL;DR: In this paper, it is hypothesized that similar acceleration and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions, and the implications for isotope separation and other applications of physical interest are discussed.
Abstract: Micron-sized particles have been accelerated and trapped in stable optical potential wells using only the force of radiation pressure from a continuous laser. It is hypothesized that similar accelerations and trapping are possible with atoms and molecules using laser light tuned to specific optical transitions. The implications for isotope separation and other applications of physical interest are discussed.

4,516 citations

Journal ArticleDOI
29 Aug 2008-Science
TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.
Abstract: The coupling of optical and mechanical degrees of freedom is the underlying principle of many techniques to measure mechanical displacement, from macroscale gravitational wave detectors to microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review these developments and discuss the opportunities for innovative technology as well as for fundamental science.

1,718 citations

Book
01 Jan 2000

1,493 citations

Journal ArticleDOI
01 Jan 2009-Nature
TL;DR: An approach to optofluidic transport that overcomes limitations, using sub-wavelength liquid-core slot waveguides, and provides the ability to handle extended biomolecules directly.
Abstract: The ability to manipulate nanoscopic matter precisely is critical for the development of active nanosystems. Optical tweezers are excellent tools for transporting particles ranging in size from several micrometres to a few hundred nanometres. Manipulation of dielectric objects with much smaller diameters, however, requires stronger optical confinement and higher intensities than can be provided by these diffraction-limited systems. Here we present an approach to optofluidic transport that overcomes these limitations, using sub-wavelength liquid-core slot waveguides. The technique simultaneously makes use of near-field optical forces to confine matter inside the waveguide and scattering/adsorption forces to transport it. The ability of the slot waveguide to condense the accessible electromagnetic energy to scales as small as 60 nm allows us also to overcome the fundamental diffraction problem. We apply the approach here to the trapping and transport of 75-nm dielectric nanoparticles and lambda-DNA molecules. Because trapping occurs along a line, rather than at a point as with traditional point traps, the method provides the ability to handle extended biomolecules directly. We also carry out a detailed numerical analysis that relates the near-field optical forces to release kinetics. We believe that the architecture demonstrated here will help to bridge the gap between optical manipulation and nanofluidics.

776 citations

Journal ArticleDOI
28 May 2009-Nature
TL;DR: Measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume and for which large per-photon optical gradient forces are realized enable the exploration of cavity optomechanical regimes.
Abstract: The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical and microwave cavities is of growing interest. Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre- or micrometre-scale structures using the radiation pressure force. By comparison, in microwave devices, low-loss superconducting structures have been used for gradient-force-mediated coupling to a nanomechanical oscillator of picogram mass. Here we describe measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume, and for which large per-photon optical gradient forces are realized. The resulting scale of the per-photon force and the mass of the structure enable the exploration of cavity optomechanical regimes in which, for example, the mechanical rigidity of the structure is dominantly provided by the internal light field itself. In addition to precision measurement and sensitive force detection, nano-optomechanics may find application in reconfigurable and tunable photonic systems, light-based radio-frequency communication and the generation of giant optical nonlinearities for wavelength conversion and optical buffering.

749 citations