scispace - formally typeset
Search or ask a question
Book ChapterDOI

Nanoagriculture and Water Quality Management

TL;DR: Nanomaterials have rapidly gained importance in many fields of science and technology due to their unique properties and are used in the agri-food sector notably for preservation and packaging, for agriculture and for water quality management.
Abstract: Nanomaterials have rapidly gained importance in many fields of science and technology due to their unique properties. Nanomaterials are used in the agri-food sector notably for preservation and packaging, for agriculture and for water quality management. Future applications will improve shelf life, food quality, safety, and fortification. Nanosensors will be used to analyse contaminated food and water. Here we review the application of nanotechnology in agriculture and subdisciplines. The major points are the following. We explain the classification and synthesis of nanomaterials used for agriculture and water management. Then we present major applications such as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode technology, quantum dots for staining bacteria, and nano-biosensors. Applications to water quality management include nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals, and wireless nanosensors.
Citations
More filters
Journal ArticleDOI
TL;DR: A better understanding of the current scenario of the nanotoxicology, disease progression due to nanomaterials, and their use in the food industry and medical therapeutics is provided.
Abstract: Nanotechnology has seen exponential growth in last decade due to its unique physicochemical properties; however, the risk associated with this emerging technology has withdrawn ample attention in the past decade. Nanotoxicity is majorly contributed to the small size and large surface area of nanomaterials, which allow easy dispersion and invasion of anatomical barriers in human body. Unique physio-chemical properties of nanoparticles make the investigation of their toxic consequences intricate and challenging. This makes it important to have an in-depth knowledge of different mechanisms involved in nanomaterials's action and toxicity. Nano-toxicity has various effects on human health and diseases as they can easily enter into the humans via different routes, mainly respiratory, dermal, and gastrointestinal routes. This also limits the use of nanomaterials as therapeutic and diagnostic tools. This review focuses on the nanomaterial-cell interactions leading to toxicological responses. Different mechanisms involved in nanoparticle-mediated toxicity with the main focus on oxidative stress, genotoxic, and carcinogenic potential has also been discussed. Different methods and techniques used for the characterization of nanomaterials in food and other biological matrices have also been discussed in detail. Nano-toxicity on different organs-with the major focus on the cardiac and respiratory system-have been discussed. Conclusively, the risk management of nanotoxicity is also summarized. This review provides a better understanding of the current scenario of the nanotoxicology, disease progression due to nanomaterials, and their use in the food industry and medical therapeutics. Briefly, the required rules, regulations, and the need of policy makers has been discussed critically.

254 citations


Cites background from "Nanoagriculture and Water Quality M..."

  • ...Nanotechnology can also improve the water disperseability, thermal stability, and oral bioavailability of the functional compounds of food (McClements et al., 2009; Dasgupta et al., 2016)....

    [...]

  • ...The increasing concern leads to the growing need of technical requirements for the detection and characterization of environmental NPs and to drive the limits of modern sampling techniques and instrumentation (Dasgupta et al., 2016)....

    [...]

Journal ArticleDOI
TL;DR: A review of the application of nanotechnology in agriculture can be found in this paper, where the major points discussed are: (1) Nanomaterials for agriculture and water quality management, which include nanoscale carriers, fabricated xylem vessels, nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals and wireless nanosensors.
Abstract: Due to their small size and unique physico-chemical characteristics, nanomaterials have gained importance in the agri-food sector, notably in preservation and packaging. Future applications will focus on shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food, irrigating water and drinking water. Different types and shapes of nanomaterials are being used depending upon the needs and nature of the work in agriculture and water quality management. Here we review the application of nanotechnology in agriculture. The major points discussed are: (1) Nanomaterials for agriculture and water quality management. (2) Research interests such as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode technology, quantum dots for staining bacteria and nanobiosensors. (3) Nanotechnological applications for agriculture, which includes nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals and wireless nanosensors.

144 citations


Cites background from "Nanoagriculture and Water Quality M..."

  • ...Nanotechnology and research trends in agriculture Nanotechnology, this vast field of the twenty-first century, is making a very significant impact on the world’s economy, industry and people’s lives (Gruère 2012; Dasgupta et al. 2016a)....

    [...]

  • ...This article is an abridged version of the chapter published by Dasgupta et al. (2016a) in the series Sustainable Agriculture Reviews....

    [...]

  • ...It also can be noted that recently trends are changing towards in silico and computational as well as in vitro approaches towards toxicity evaluation of inorganic nanoparticles at biomolecular level (Ranjan et al. 2015, 2016b; Dasgupta et al. 2016b; Jain et al. 2016)....

    [...]

  • ...The improved activity of antimicrobial and anticancerous activity was observed for them (Sireesh et al. 2015, 2017; Dasgupta et al. 2016c; Jain et al. 2016; Shukla et al. 2017; Siripireddy et al. 2017; Tammina et al. 2017)....

    [...]

Journal ArticleDOI
TL;DR: The data of the present study determines the detailed evaluation of BSA adsorption on AgNP along with mechanism, kinetics and isotherm of the Adsorption.

62 citations


Cites background from "Nanoagriculture and Water Quality M..."

  • ...The tight and specific or nonspecific binding of pr oteins with nanomaterials forms a surface coating termed as protein corona [5,6]....

    [...]

Journal ArticleDOI
TL;DR: The data of the present study determines the detailed evaluation of BSA adsorption on TiO2 nanoparticle along with mechanism and Adsorption kinetics.
Abstract: The use of nanoparticles in food or pharma requires a molecular-level perceptive of how NPs interact with protein corona once exposed to a physiological environment. In this study, the conformational changes of bovine serum albumin (BSA) were investigated in detail when exposed to different concentration of titanium dioxide nanoparticle by various techniques. To analyze the effects of NPs on proteins, the interaction between bovine serum albumin and titanium dioxide nanoparticles at different concentrations were investigated. The interaction, BSA conformations, kinetics, and adsorption were analyzed by dynamic light scattering, Fourier transform infrared spectroscopy and fluorescence quenching. Dynamic light scattering analysis confirms the interaction with major changes in the size of the protein. Fluorescence quenching analysis confirms the side-on or end-on interaction of 1.1 molecules of serum albumin to titanium dioxide nanoparticles. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The spectroscopic analysis suggests that there is a conformational change both at secondary and tertiary structure levels. A distortion in both α-helix and β-sheets was observed by Fourier transform infrared (FTIR) spectroscopy. Fluorescence quenching analysis confirms the interaction of a molecule of bovine serum albumin to the single TiO2 nanoparticle. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The data of the present study determines the detailed evaluation of BSA adsorption on TiO2 nanoparticle along with mechanism and adsorption kinetics.

56 citations

Journal ArticleDOI
TL;DR: In a literature survey, this article found 44.6% publications in the nano-food research area during the years 2013-2015 and 59.09% publications during 2012-2015.
Abstract: High population rise and climate changes are increasing issues of agricultural production and food safety. Nanotechnology is finding revolutionary applications to improve agricultural and food systems, notably for better crop production and food preservation. Here we review research, industrial and patent trends of nanoscience in food and agriculture. In a literature survey, we found 44.6% publications in the nano-food research area during the years 2013–2015 and 59.09% publications in the nano-agriculture research area during 2012–2015. USA is leading in the development of nanotechnology firms with a maximum share of 75.5% of the total firms, followed by Germany and France with 8.10 and 4.74%, respectively. USA is leading in the nano-food research with 22 granted patents, whereas China is placed first in nano-agriculture research with 28 granted patents during assessment years 2011–2015. Nano-food research focused mainly on nano-food packaging with 76.84% contributions, whereas in nano-agriculture research, focus has been on nano-fertilizers with 90% contributions. Germany, France, Korea, Italy, Czech Republic, Slovenia and Slovak republic have more than 20% of dedicated nanotechnology firms. A growth of about 45% in nano-food patents has been observed for USA during 2011–2015, and China is leading in the nano-agriculture patents with an increase of 60.7% during 2012–2015.

55 citations

References
More filters
Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

5,401 citations

Journal ArticleDOI

3,811 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
TL;DR: A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility.
Abstract: A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ∼$1,000 in ∼24 h.

2,512 citations

Journal ArticleDOI
Ming Hua1, Shujuan Zhang1, Bingcai Pan1, Weiming Zhang1, Lu Lv1, Quanxing Zhang1 
TL;DR: The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal.

1,828 citations