scispace - formally typeset
Search or ask a question
Posted ContentDOI

Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2

TL;DR: In this paper, the authors presented a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization.
Abstract: Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the impact that neutralizing antibodies have had on those with early or mild COVID-19, and what their approval for early management of COVID19 means for other viral entry inhibitors that have a similar mechanism of action, and highlight studies that show that therapeutic strategies involving various virus entry inhibitors such as multivalent antibodies, recombinant ACE2 and miniproteins can be effective not only for pre-exposure prophylaxis, but also in protecting against SARS-CoV-2 antigenic drift and future zoonotic sar
Abstract: The COVID-19 pandemic has put healthcare infrastructures and our social and economic lives under unprecedented strain. Effective solutions are needed to end the pandemic while significantly lessening its further impact on mortality and social and economic life. Effective and widely-available vaccines have appropriately long been seen as the best way to end the pandemic. Indeed, the current availability of several effective vaccines are already making a significant progress towards achieving that goal. Nevertheless, concerns have risen due to new SARS-CoV-2 variants that harbor mutations against which current vaccines are less effective. Furthermore, some individuals are unwilling or unable to take the vaccine. As health officials across the globe scramble to vaccinate their populations to reach herd immunity, the challenges noted above indicate that COVID-19 therapeutics are still needed to work alongside the vaccines. Here we describe the impact that neutralizing antibodies have had on those with early or mild COVID-19, and what their approval for early management of COVID-19 means for other viral entry inhibitors that have a similar mechanism of action. Importantly, we also highlight studies that show that therapeutic strategies involving various viral entry inhibitors such as multivalent antibodies, recombinant ACE2 and miniproteins can be effective not only for pre-exposure prophylaxis, but also in protecting against SARS-CoV-2 antigenic drift and future zoonotic sarbecoviruses.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a computational framework was developed for comprehensive and rapid mutational scanning of binding energetics and residue interaction networks in the SARS-CoV-2 spike protein complexes.
Abstract: We developed a computational framework for comprehensive and rapid mutational scanning of binding energetics and residue interaction networks in the SARS-CoV-2 spike protein complexes. Using this approach, we integrated atomistic simulations and conformational landscaping of the SARS-CoV-2 spike protein complexes with ensemble-based mutational screening and network modeling to characterize mechanisms of structure-functional mimicry and resilience toward mutational escape by the ACE2 protein decoy and de novo designed miniprotein inhibitors. A detailed analysis of structural plasticity of the SARS-CoV-2 spike proteins obtained from atomistic simulations of conformational landscapes and sequence-based profiling of the disorder propensities revealed the intrinsically flexible regions that harbor key functional sites targeted by circulating variants. The conservation of collective dynamics in the SARS-CoV-2 spike protein complexes showed that mutational escape positions are important for modulation of functional motions and that mutational changes in these sites can alter allosteric interaction networks. Through mutational profiling of binding and allosteric propensities in the SARS-CoV-2 spike protein complexes, we identified the key binding and regulatory hotspots that collectively determine functional response and resilience of miniproteins to mutational variants. The results suggest that binding affinities and allosteric signatures of the SARS-CoV-2 complexes can be determined by dynamic crosstalk between structurally stable regulatory centers and conformationally adaptable allosteric hotspots that collectively control the resilience toward mutational escape. This may underlie a mechanism in which moderate perturbations in the mutational escape positions can induce global allosteric changes and alter functional protein response by modulating signaling in the residue interaction networks.

20 citations

Journal ArticleDOI
TL;DR: In this article , the application of nanobodies in the treatment and detection of COVID-19 infection was reviewed, and the results showed that extensive and sufficient studies have been performed in the field of production of Nanobodies against SARS-CoV-2 virus.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies and suggest multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.

11 citations

Journal ArticleDOI
27 Sep 2021
TL;DR: In this paper, the authors combine atomistic simulations with the ensemble-based mutational profiling of binding for SARS-CoV-2 S-RBD complexes to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations.
Abstract: Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + U, a biparatopic nanobody VHH VE, and a combination of the CC12.3 antibody and VHH V/W nanobodies. This study characterizes the binding energy hotspots in the SARS-CoV-2 protein and complexes with nanobodies providing a quantitative analysis of the effects of circulating variants and escaping mutations on binding that is consistent with a broad range of biochemical experiments. The results suggest that mutational escape may be controlled through structurally adaptable binding hotspots in the receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant binding epitope targeted by VHH U/V/W nanobodies. This study offers a plausible mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobodies can elicit the increased binding affinity response and yield resilience to common escape mutants.

6 citations

References
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
TL;DR: The analysis described shows K I does not equal I 50 when competitive inhibition kinetics apply; however, K I is equal to I 50 under conditions of either noncompetitive or uncompetitive kinetics.

12,583 citations

Journal ArticleDOI
TL;DR: A comparative protein modelling method designed to find the most probable structure for a sequence given its alignment with related structures, which is automated and illustrated by the modelling of trypsin from two other serine proteinases.

12,386 citations

Journal ArticleDOI
13 Mar 2020-Science
TL;DR: The authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor, and test several published SARS-CoV RBD-specific monoclonal antibodies found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs.
Abstract: The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.

7,324 citations

Related Papers (5)