scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nanoencapsulation Techniques for Food Bioactive Components: A Review

TL;DR: This review focuses on the various nanoencapsulation techniques such as emulsification, coacervation, inclusion, complexation nanoprecipitation, emulsifying–solvent evaporation, and supercritical fluid for food ingredients.
Abstract: The protection and controlled release of bioactive compounds at the right time and the right place can be implemented by encapsulation. Nanoencapsulation remains to be the one of the most promising technologies having the feasibility to entrap bioactive compounds. Nanoencapsulation of bioactive compounds has versatile advantages for targeted site-specific delivery and efficient absorption through cells. However, researches in the application of nanotechnology in the food industry have been very limited and there are only a few review articles that explored the nanoencapsulation technology. This review focuses on the various nanoencapsulation techniques such as emulsification, coacervation, inclusion, complexation nanoprecipitation, emulsification–solvent evaporation, and supercritical fluid for food ingredients. Drying techniques such as spray drying and freeze drying for stabilization of nanoparticles are also discussed. Current state of knowledge, limitations of these techniques, and recent trends are also discussed. Finally, safety and regulatory issues in the nanoencapsulation of bioactive compounds are also highlighted.
Citations
More filters
Journal ArticleDOI
TL;DR: The current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture are covered.
Abstract: Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. The application of nanotechnology to agriculture and food industries is resonant increased encumbrance because of the potential benefits ranging from enhanced food quality, safety to reduced agricultural inputs and enriched absorbing nanoscale nutrients from the soil. Agriculture, food and natural resources are a part of those challenges like sustainability, susceptibility, human health and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interest of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants.This study provides a review of the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

813 citations


Cites background from "Nanoencapsulation Techniques for Fo..."

  • ...The benefits of encapsulation methods are for protection of substances/objects from adverse environments, for controlled release, and for precision targeting (Ezhilarasi et al., 2012; Ozdemir and Kemerli, 2016)....

    [...]

Journal ArticleDOI
TL;DR: This critical review investigated the potential of nanotechnology, especially the nanoencapsulation process for pesticide delivery, to reduce the dosage of pesticides and human exposure to them and provides fundamental and critical information for researchers and engineers in the field of nantechnology.
Abstract: The application of nanotechnology in pesticide delivery is relatively new and in the early stages of development. This technology aims to reduce the indiscriminate use of conventional pesticides and ensure their safe application. This critical review investigated the potential of nanotechnology, especially the nanoencapsulation process for pesticide delivery. In-depth investigation of various nanoencapsulation materials and techniques, efficacy of application, and current research trends are also presented. The focus of ongoing research was on the development of a nanoencapsulated pesticide formulation that has slow releasing properties with enhanced solubility, permeability, and stability. These properties are mainly achieved through either protecting the encapsulated active ingredients from premature degradation or increasing their pest control efficacy for a longer period. Nanoencapsulated pesticide formulation is able to reduce the dosage of pesticides and human exposure to them, which is environmenta...

552 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercET were discussed, including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation.
Abstract: Background Quercetin, one of the most well-known flavonoids, has been included in human diet for a long history. The use of quercetin has been widely associated with a great number of health benefits, including antioxidant, anti-inflammatory, antiviral and anticancer as well as the function to ease some cardiovascular diseases (i.e., heart disease, hypertension, and high blood cholesterol). However, poor water solubility, chemical instability and low bioavailability of quercetin greatly limit its applications. Utilization of delivery systems can improve its stability, efficacy and bioavailability. Scope and approach In this review, biological activities, chemical stability, metabolism and toxicity of quercetin and different delivery systems for quercetin were discussed. Key findings and conclusions Quercetin digested in human body (e.g., mouth, small intestine, liver, kidneys) undergoes glucuronidation, sulfation or methylation. During the food processing and storage, many factors such as heat, pH, metal ions, could affect the chemical stability (including oxidation and degradation) of quercetin. Utilization of delivery systems including lipid-based carriers, nanoparticles, inclusion complexes, micelles and conjugates-based encapsulation has the potential to improve both the stability and bioavailability and thus health benefits of quercetin. Each delivery system has its unique advantages and shortcomings, and the specific selection should be based on the application domains. Moreover, the exploration of natural food-grade ingredients as main compositions of delivery systems for quercetin might be required in the future.

460 citations

Journal ArticleDOI
TL;DR: In this article, the potential food based applications of electrospinning and electrospraying techniques such as encapsulation, enzyme immobilization, food coating and development of materials for filtration and active food packaging are discussed.
Abstract: Electrohydrodynamic processes namely electrospinning and electrospraying are facile, cost effective and flexible methods that utilize electrically charged jet of polymer solution for production of fibers or particles at micron, submicron and nanoscale. The electrospun fibers and electrosprayed particles possess many structural and functional advantages. However, their use in the field of food processing and preservation remains less explored. This review provides a succinct discussion on the potential food based applications of electrospinning and electrospraying techniques such as encapsulation, enzyme immobilization, food coating and development of materials for filtration and active food packaging. Further, the existing limitations and scope for future research are underscored.

444 citations

Journal ArticleDOI
TL;DR: Bacterial cellulose (BC), a microbial polysaccharide, has significant potential as a food ingredient in view of its high purity, in situ change of flavor and color, and having the ability to form various shapes and textures as mentioned in this paper.

431 citations

References
More filters
Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Abstract: Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.

8,323 citations

Journal ArticleDOI
TL;DR: Relevant issues for the introduction of SLN to the pharmaceutical market, such as status of excipients, toxicity/tolerability aspects and sterilization and long-term stability including industrial large scale production are discussed.

3,260 citations


"Nanoencapsulation Techniques for Fo..." refers background in this paper

  • ...Homogenization may be performed either at elevated temperature (hot homogenization) or below room temperature (cold homogenization) (Mueller et al. 2000)....

    [...]

Journal ArticleDOI
TL;DR: The working group report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials, and there is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies.
Abstract: The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for

2,015 citations

Journal ArticleDOI
TL;DR: The most important parameters that influence the success of freeze-drying of these fragile systems are discussed, and an overview of nanoparticles freeze-Drying process and formulation strategies are provided with a focus on the impact of formulation and process on particle stability.

1,383 citations


"Nanoencapsulation Techniques for Fo..." refers background in this paper

  • ...Abdelwahed et al. (2006b) studied the freeze drying of PCL nanocapsules encapsulating miglyol 829 oil, Food Bioprocess Technol...

    [...]