scispace - formally typeset
Book ChapterDOI

Nanomaterials: An Introduction

01 Jan 2021-Vol. 16, pp 1-27

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, a nanosecond pulse laser-assisted photoporation using titanium-oxide nanotubes (TNT) for highly efficient intracellular delivery has been established.
Abstract: In the present study, a newly developed nanosecond pulse laser-assisted photoporation using titanium-oxide nanotubes (TNT) for highly efficient intracellular delivery has been established. The proof of concept for the possibilities of intracellular delivery after irradiation of nanosecond pulse laser on TNT has been validated. TNT on titanium sheets using the electrochemical anodization technique at different voltage and time has been developed. The extensive X-ray photoelectron spectroscopy (XPS) study confirms the presence of different titanium oxide species such as TiO2, TixOy (TiO/Ti2O3/Ti3O5) having different concentrations in TNT formed by different anodization voltage and time along with a minor quantity of Ti metal (Ti0). Formation of sub-oxides results in oxygen defects in TNT. It has also been evidenced from XPS that the anodization voltage and time can change the concentration of oxygen defects on the nanotubes. Due to the formation of oxygen defects, nanotubes have the quasi-metallic and metallic properties. These properties of the nanotubes may facilitate the intracellular delivery by various mechanisms after irradiation of nanosecond pulse laser. Using this technique, we successfully have delivered Propidium iodide (PI) and dextran into HeLa cells (HeLa- human cervical cancer cells) with high transfection efficiency and cell viability on nanotubes formed at 15 V/2 h.

5 citations


References
More filters
Journal ArticleDOI

[...]

TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

6,592 citations

Journal ArticleDOI

[...]

13 Dec 2002-Science
TL;DR: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP), characterized by a slightly truncated shape bounded by {100, {110}, and {111} facets.
Abstract: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). These cubes were single crystals and were characterized by a slightly truncated shape bounded by {100}, {110}, and {111} facets. The presence of PVP and its molar ratio (in terms of repeating unit) relative to silver nitrate both played important roles in determining the geometric shape and size of the product. The silver cubes could serve as sacrificial templates to generate single-crystalline nanoboxes of gold: hollow polyhedra bounded by six {100} and eight {111} facets. Controlling the size, shape, and structure of metal nanoparticles is technologically important because of the strong correlation between these parameters and optical, electrical, and catalytic properties.

5,701 citations

Journal ArticleDOI

[...]

TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,604 citations

Journal ArticleDOI

[...]

TL;DR: An overview on some of the currently used systems for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles is provided.
Abstract: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.

2,621 citations

Journal ArticleDOI

[...]

TL;DR: This review explores recent work directed towards more targeted treatment of cancer, whether through more specific anti-cancer agents or through methods of delivery, including delivery by avoiding the reticuloendothelial system, utilizing the enhanced permeability and retention effect and tumor-specific targeting.
Abstract: This review explores recent work directed towards more targeted treatment of cancer, whether through more specific anti-cancer agents or through methods of delivery. These areas include delivery by avoiding the reticuloendothelial system, utilizing the enhanced permeability and retention effect and tumor-specific targeting. Treatment opportunities using antibody-targeted therapies are summarized. The ability to treat cancer by targeting delivery through angiogenesis is also discussed and antiangiogenic drugs in clinical trials are presented. Delivery methods that specifically use nanoparticles are also highlighted, including both degradable and nondegradable polymers.

2,240 citations