scispace - formally typeset
Search or ask a question
Book ChapterDOI

Nanomaterials: Versatile Drug Carriers for Nanomedicine

TL;DR: In this article, the authors highlight the recent advancements and applications of nano-carriers for drug delivery in medicine, especially wound healing therapeutics, and discuss different approaches to enhance drug cargo capacity, improve cell delivery efficiency, to avoid host immune systems, and to achieve specific cell targeting.
Abstract: Certain medicines and therapies have emerged for the treatment of different ailments. But in many cases, they have poor solubility, lower bioavailability, inability to cross the blood-brain barrier (BBB), and drug resistance. It becomes essential to establish standard treatment systems for overcoming such challenges. In this connection, the nanomaterial application in medicine and pharmaceuticals has rapidly gained interest with revolutionary prospects. The idea of nano-carriers first observed in a biological system consisting of nanoparticles is committed to locomotory function and protein cargos like importin, exportin. This observation led to the development of biomimetic nanomaterials for drug delivery. The synthesized nanomaterials exhibit useful properties such as large surface area, maximum bioavailability, reduced toxicity, high specificity along with enhanced permeability and retention (EPR) effect. These properties contribute to enhancing the efficacy of drugs having short half-lives, monitoring drugs for sustained release, enhancing the rate of dissolution of drugs, and reducing required dosage volume. Thus, increased therapeutic action and fewer side effects are to improve the quality of human life. Currently, many nano-carriers such as niosomes, dendrimers, fullerene, polymer-based nanoparticles, micelle, liposomes, hydrogels, metallic, mesoporous silica, quantum dots, etc. show potential for better drug delivery systems. These help in carrying entities like drug molecules, DNA/RNA, proteins, viruses, cell receptor sites, lipid bilayers, and variable antibody region for drug delivery in therapeutics. Such nano-therapeutics and diagnostics will unfold the secrets of human longevity and help reduce human illness, including cardiovascular disease, genetic disorder, immunodeficiency, cancer, and even viral infections. This chapter highlights recent advancements and applications of nano-carriers for drug delivery in medicine, especially wound healing therapeutics. It also discusses different approaches to enhance drug cargo capacity, improve cell delivery efficiency, to avoid host immune systems, and to achieve specific cell targeting.
Citations
More filters
References
More filters
Journal Article
TL;DR: It is speculated that the tumoritropic accumulation of smancs and other proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels in tumors of tumor-bearing mice.
Abstract: We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.

6,483 citations

Journal ArticleDOI
TL;DR: An overview on some of the currently used systems for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles is provided.
Abstract: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.

3,140 citations

Journal ArticleDOI
TL;DR: An updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs and selective diagnosis through disease marker molecules is presented.
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

3,112 citations

Journal ArticleDOI
TL;DR: The long-lived (“hard”) protein corona formed from human plasma is studied for a range of nanoparticles that differ in surface properties and size and both size and surface properties were found to play a very significant role.
Abstract: Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.

2,681 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research developments of a series of surface-functionalized mesoporous silica nanoparticle (MSN) materials as efficient drug delivery carriers and envision that these MSN-based systems have a great potential for a variety of drug delivery applications.

2,373 citations