scispace - formally typeset
Journal ArticleDOI

Nanoparticle therapeutics: an emerging treatment modality for cancer

Reads0
Chats0
TLDR
The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract
Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

read more

Citations
More filters
Journal ArticleDOI

Metal-organic frameworks in biomedicine.

TL;DR: Metal Organic Frameworks in Biomedicine Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre.
Journal ArticleDOI

Strategies in the design of nanoparticles for therapeutic applications

TL;DR: This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.
Journal ArticleDOI

Delivering nanomedicine to solid tumors

TL;DR: In this paper, the authors review the barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers and discuss design considerations for optimizing the nanoparticles to tumors.
Journal ArticleDOI

Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery

TL;DR: The in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure.
Journal ArticleDOI

Nanoparticles in photodynamic therapy.

TL;DR: This paper presents a meta-modelling study of the response of the immune system to chemotherapy and its applications in the context of central nervous system disorders.
References
More filters
Journal Article

A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs

TL;DR: It is speculated that the tumoritropic accumulation of smancs and other proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels in tumors of tumor-bearing mice.
Journal ArticleDOI

Multidrug resistance in cancer: role of ATP–dependent transporters

TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Journal ArticleDOI

Effect of pegylation on pharmaceuticals

TL;DR: How PEGylation can result in drugs that are often more effective and safer, and which show improved patient convenience and compliance are reviewed.
Journal ArticleDOI

Therapeutic Nanoparticles for Drug Delivery in Cancer

TL;DR: In this paper, the authors proposed a passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles, enabling them to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors.
Journal ArticleDOI

Mechanisms of cancer drug resistance

TL;DR: The most common reason for acquisition of resistance to a broad range of anticancer drugs is expression of one or more energy-dependent transporters that detect and eject anti-cancer drugs from cells, but other mechanisms of resistance including insensitivity to drug-induced apoptosis and induction of drug-detoxifying mechanisms probably play an important role in acquired anticancer drug resistance as mentioned in this paper.
Related Papers (5)