scispace - formally typeset
Search or ask a question
Book ChapterDOI

Nanoparticles for Agriculture: Synthesis, Classification and Characterization

01 Jan 2016-pp 99-127
TL;DR: The synthesis, classification and characterization of nanoparticles are reviewed to find applications such as identification of diseases by nanosensors, pesticide and fertilizer improvement by nanoformulation, packaging and processing of food industry.
Abstract: Nanotechnology is a promising for agriculture and food products. Here we review the synthesis, classification and characterization of nanoparticles. Nanoparticles, nanoemulsions, nanopores and nanoproducts have found applications such as identification of diseases by nanosensors, pesticide and fertilizer improvement by nanoformulation, packaging and processing of food industry.
Citations
More filters
Journal ArticleDOI
TL;DR: An antimicrobial methodology based on the properties of gold nanorods (GNRs) becomes highly efficient light to heat nano-converters extremely useful for PPTT applications under a resonant laser irradiation.
Abstract: Plasmonic photo-thermal therapy (PPTT) is a minimally invasive, drug-free, therapy based on the properties of noble metal nanoparticles, able to convert a bio-transparent electromagnetic radiation into heat. PPTT has been used against cancer and other diseases. Herein, we demonstrate an antimicrobial methodology based on the properties of gold nanorods (GNRs). Under a resonant laser irradiation GNRs become highly efficient light to heat nano-converters extremely useful for PPTT applications. The concept here is to assess the antimicrobial effect of easy to synthesize, suitably purified, water-dispersible GNRs on Escherichia coli bacteria. A control on the GNRs concentration used for the process has been demonstrated critical in order to rule out cytotoxic effects on the cells, and still to be able to generate, under a near infrared illumination, an adequate amount of heat suited to increase the temperature up to ≈50 °C in about 5 min. Viability experiments evidenced that the proposed system accomplished a killing efficiency suitable to reducing the Escherichia coli population of about 2 log CFU (colony-forming unit).

23 citations


Cites background from "Nanoparticles for Agriculture: Synt..."

  • ...Currently plasmonic NPs are investigated in several research fields such as electronics [31], photonics [32], agriculture [33], medicine [34] and environmental remediation [35]....

    [...]

Journal ArticleDOI
01 Feb 2019
TL;DR: In this paper, the impact of nanomaterials on the agro-environement and the enhanced productivity in frame of sustainability is discussed. But, the focus of this review is on the use of nano-materials for sustainable agroproductivity.
Abstract: THE GLOBAL agricultural production suffers from many problems and challenges including climate change, natural resources depletion, environmental pollution, soil degradation, etc. Hence, the global security of this vital sector definitely will be threaten including water security, soil security, energy security, food security, etc. Day by day, several attempts already have been conducted in seeking of the humanity for suitable and sustainable solutions to overcome these previous problems. Nanotechnology was and still one of the most important solutions, which will help us to overcome these problems. So, several nanomaterials have been successfully used in many agro-production fields including nanofertilizers, nanopesticides, nanoremediation, nanobiosensors as well as using of nanoparticles in agri-food production. These nanomaterials can help the agro-production to exploit the natural resources in more sustainable manner and to minimize the agro-wastes. Therefore, regulations for more safety in nanomaterials utilization for agro-production should be starting from the handling for seed germination till the handling for postharvest of agricultural products. Several investigations have been proved the importance of nanomaterials in global securities, the agro-production through the nano-agro-chemicals, management of the agro-wastes, etc. Therefore, this review will highlight new insights and novel approaches for using nanomaterials for sustainable agro-productivity. It will also include the impact of nanomaterials on the agro-environement and the enhanced productivity in frame of sustainability.

22 citations

References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
30 May 2003-Science
TL;DR: This work characterized water-soluble cadmium selenide–zinc sulfide quantum dots for multiphoton imaging in live animals and found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.
Abstract: The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

2,246 citations

Journal ArticleDOI
TL;DR: In this paper, a new memory structure using threshold shifting from charge stored in nanocrystals of silicon (≊5nm in size) was described, which utilizes direct tunneling and storage of electrons in the nanocrystal.
Abstract: A new memory structure using threshold shifting from charge stored in nanocrystals of silicon (≊5nm in size) is described. The devices utilize direct tunneling and storage of electrons in the nanocrystals. The limited size and capacitance of the nanocrystals limit the numbers of stored electrons. Coulomb blockade effects may be important in these structures but are not necessary for their operation. The threshold shifts of 0.2–0.4 V with read and write times less than 100’s of a nanosecond at operating voltages below 2.5 V have been obtained experimentally. The retention times are measured in days and weeks, and the structures have been operated in an excess of 109 cycles without degradation in performance. This nanomemory exhibits characteristics necessary for high density and low power.

1,624 citations

Journal ArticleDOI
TL;DR: Effects of five types of nanoparticles on seed germination and root growth of six higher plant species were investigated and inhibition on root growth varied greatly among nanoparticles and plants.

1,522 citations

Journal ArticleDOI
TL;DR: Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material as mentioned in this paper, and they can have other functions when added to a polymer, such as antimicrobial activity, enzyme immobilization, biosensing, etc.

1,058 citations