scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis

01 Sep 2017-Advanced Functional Materials (John Wiley & Sons, Ltd)-Vol. 27, Iss: 35, pp 1702317
TL;DR: In this paper, the recent research progress on nanostructured metal sulfides and metal selenides for application in SIBs/LIBs and hydrogen/oxygen electrocatalysis (hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction) is summarized and discussed.
Abstract: Energy storage and conversion technologies are vital to the efficient utilization of sustainable renewable energy sources. Rechargeable lithium-ion batteries (LIBs) and the emerging sodium-ion batteries (SIBs) are considered as two of the most promising energy storage devices, and electrocatalysis processes play critical roles in energy conversion techniques that achieve mutual transformation between renewable electricity and chemical energies. It has been demonstrated that nanostructured metal chalcogenides including metal sulfides and metal selenides show great potential for efficient energy storage and conversion due to their unique physicochemical properties. In this feature article, the recent research progress on nanostructured metal sulfides and metal selenides for application in SIBs/LIBs and hydrogen/oxygen electrocatalysis (hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction) is summarized and discussed. The corresponding electrochemical mechanisms, critical issues, and effective strategies towards performance improvement are presented. Finally, the remaining challenges and perspectives for the future development of metal chalcogenides in the energy research field are proposed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the analysis of recent research breakthroughs in the development of high electrochemical performance supercapacitors using transition metal oxides/hydroxides, sulfides, selenides and phosphides.

453 citations

Journal ArticleDOI
TL;DR: In this article, a cost-effective Co3S4@MoS2 hetero-structured catalyst for both hydrogen evolution reaction and oxygen evolution reaction (OER) in an alkaline environment is presented.

363 citations

Journal ArticleDOI
TL;DR: In this paper, current research progress of transition metal-based battery-type materials in hybrid supercapacitors is reviewed, and conclusive remarks and opinions for future development of high performance HSCs are proposed with the intention to provide some clues for build-up of high rate and long life energy storage systems.

360 citations

References
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Abstract: This article provides a comprehensive review of current research activities that concentrate on one-dimensional (1D) nanostructures—wires, rods, belts, and tubes—whose lateral dimensions fall anywhere in the range of 1 to 100 nm. We devote the most attention to 1D nanostructures that have been synthesized in relatively copious quantities using chemical methods. We begin this article with an overview of synthetic strategies that have been exploited to achieve 1D growth. We then elaborate on these approaches in the following four sections: i) anisotropic growth dictated by the crystallographic structure of a solid material; ii) anisotropic growth confined and directed by various templates; iii) anisotropic growth kinetically controlled by supersaturation or through the use of an appropriate capping reagent; and iv) new concepts not yet fully demonstrated, but with long-term potential in generating 1D nanostructures. Following is a discussion of techniques for generating various types of important heterostructured nanowires. By the end of this article, we highlight a range of unique properties (e.g., thermal, mechanical, electronic, optoelectronic, optical, nonlinear optical, and field emission) associated with different types of 1D nanostructures. We also briefly discuss a number of methods potentially useful for assembling 1D nanostructures into functional devices based on crossbar junctions, and complex architectures such as 2D and 3D periodic lattices. We conclude this review with personal perspectives on the directions towards which future research on this new class of nanostructured materials might be directed.

8,259 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
06 Feb 2009-Science
TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Abstract: The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of –80 millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

6,370 citations

Journal ArticleDOI
TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Abstract: In the previous paper Ralph Brodd and Martin Winter described the different kinds of batteries and fuel cells. In this paper I will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior. The lithium battery industry is undergoing rapid expansion, now representing the largest segment of the portable battery industry and dominating the computer, cell phone, and camera power source industry. However, the present secondary batteries use expensive components, which are not in sufficient supply to allow the industry to grow at the same rate in the next decade. Moreover, the safety of the system is questionable for the large-scale batteries needed for hybrid electric vehicles (HEV). Another battery need is for a high-power system that can be used for power tools, where only the environmentally hazardous Ni/ Cd battery presently meets the requirements. A battery is a transducer that converts chemical energy into electrical energy and vice versa. It contains an anode, a cathode, and an electrolyte. The anode, in the case of a lithium battery, is the source of lithium ions. The cathode is the sink for the lithium ions and is chosen to optimize a number of parameters, discussed below. The electrolyte provides for the separation of ionic transport and electronic transport, and in a perfect battery the lithium ion transport number will be unity in the electrolyte. The cell potential is determined by the difference between the chemical potential of the lithium in the anode and cathode, ∆G ) -EF. As noted above, the lithium ions flow through the electrolyte whereas the electrons generated from the reaction, Li ) Li+ + e-, go through the external circuit to do work. Thus, the electrode system must allow for the flow of both lithium ions and electrons. That is, it must be both a good ionic conductor and an electronic conductor. As discussed below, many electrochemically active materials are not good electronic conductors, so it is necessary to add an electronically conductive material such as carbon * To whom correspondence should be addressed. Phone and fax: (607) 777-4623. E-mail: stanwhit@binghamton.edu. 4271 Chem. Rev. 2004, 104, 4271−4301

5,475 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations