scispace - formally typeset
Journal ArticleDOI

Nanostructured scaffolds for bone tissue engineering.

Reads0
Chats0
TLDR
The mechanism by which nanoscaled materials promote new bone formation was explained and the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.
Abstract
It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.

read more

Citations
More filters
Journal ArticleDOI

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.

TL;DR: The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment.
Journal ArticleDOI

Bone Tissue Engineering: Recent Advances and Challenges

TL;DR: The fundamentals of bone tissue engineering are discussed, highlighting the current state of this field, and the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration.
Journal ArticleDOI

An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

TL;DR: The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
Journal ArticleDOI

Biomimetic porous scaffolds for bone tissue engineering

TL;DR: An overview of the design of ideal biomimetic porous scaffolds for bone tissue engineering is presented, and concepts and techniques including the production of a hierarchical structure on both the macro- and nano-scales, the adjustment of biomechanical properties through structural alignment and chemical components, and the control of the biodegradability of the scaffold and its by-products are discussed.
Journal ArticleDOI

Polymeric Biomaterials for Medical Implants and Devices

TL;DR: This review article focuses on the various types of materials used in biomedical implantable devices, including the polymeric materials used as substrates and for the packaging of such devices.
References
More filters
Journal ArticleDOI

Porosity of 3D biomaterial scaffolds and osteogenesis.

TL;DR: New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.
Journal ArticleDOI

Scaffolds in tissue engineering bone and cartilage.

TL;DR: Research on the tissue engineering of bone and cartilage from the polymeric scaffold point of view is reviews from a biodegradable and bioresorbable perspective.
Journal ArticleDOI

Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles

TL;DR: As-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD and can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made.
Journal ArticleDOI

Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

TL;DR: In this article, the authors demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water.
Journal ArticleDOI

Mechanical properties and the hierarchical structure of bone

TL;DR: Further investigations of mechanical properties at the "materials level", in addition to the studies at the 'structural level' are needed to fill the gap in present knowledge and to achieve a complete understanding of the mechanical properties of bone.
Related Papers (5)