scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nanowire ultraviolet photodetectors and optical switches

16 Jan 2002-Advanced Materials (Wiley)-Vol. 14, Iss: 2, pp 158-160
TL;DR: In this paper, the photoconducting properties of individual semiconductor nanowires are explored and the authors show the possibility of creating highly sensitive nanowire switches by exploring the photocconducting properties.
Abstract: no attention has been given to the photoconducting properties of nanowires despite the exciting possibilities for use in optoelectronic circuits. Here, we show the possibility of creating highly sensitive nanowire switches by exploring the photoconducting properties of individual semiconductor nanowires. The conductivity of the ZnO nanowires is extremely sensitive to ultraviolet light exposure. The light-induced conductivity increase allows us to reversibly switch the nanowires between “OFF” and “ON” states, an optical gating phenomenon analogous to the commonly used electrical gating. [2,3,10]

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products higher than approximately 10 GHz, which promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
Abstract: ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G ∼ 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (τ ∼ 20 ns) and slow (τ ∼ 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than ∼10 GHz. The high gain and low power consumption of NW photodetec...

2,448 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the recent advances in the field, using work from this laboratory for illustration, and the understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks.
Abstract: ▪ Abstract Semiconductor nanowires and nanotubes exhibit novel electronic and optical properties owing to their unique structural one-dimensionality and possible quantum confinement effects in two dimensions. With a broad selection of compositions and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Significant progress has been made in a few short years. This review highlights the recent advances in the field, using work from this laboratory for illustration. The understanding of general nanocrystal growth mechanisms serves as the foundation for the rational sy...

1,407 citations

Journal ArticleDOI
TL;DR: This work reports a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology.
Abstract: Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

1,396 citations


Cites background from "Nanowire ultraviolet photodetectors..."

  • ...It has been extensively investigated for applications in luminescenc...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the active nanowire sensor element in such devices can be configured either as resistors whose conductance is altered by charge transfer processes occurring at their surfaces or as field effect transistors whose properties can be controlled by applying an appropriate potential onto its gate.
Abstract: ▪ Abstract Metal-oxide nanowires can function as sensitive and selective chemical or biological sensors, which could potentially be massively multiplexed in devices of small size. The active nanowire sensor element in such devices can be configured either as resistors whose conductance is altered by charge-transfer processes occurring at their surfaces or as field-effect transistors whose properties can be controlled by applying an appropriate potential onto its gate. Functionalizing the surface of these entities offers yet another avenue for expanding their sensing capability. In turn, because charge exchange between an adsorbate and the nanowire can change the electron density in the nanowire, modifying the nanowire's carrier density by external means, such as applying a potential to the gate, could modify its surface chemical properties and perhaps change the rate and selectivity of catalytic processes occurring at its surface. Although research on the use of metal-oxide nanowires as sensors is still i...

993 citations

Journal ArticleDOI
TL;DR: The photocatalytic rate was found to have no dependence on ZnO particle size, but the shape factor seems to be of overriding importance, and Hexagonal platelike nanocrystals were found to display at least 5 times higher activity than rod-shaped crystals, which clearly suggests that the polar (001) and (002) faces are more active surfaces than the nonpolar surfaces perpendicular to them.
Abstract: A wet-chemical method was employed to prepare zinc oxide nanocrystals having controlled morphology through thermal decomposition of a zinc precursor in self-assembled supramolecular structures in solvent under mild conditions. This solution method offers finer tailoring of the size and shape of the nanocrystals and is complementary to most reported physical methods. Understanding the morphological effects of pure or modified zinc oxide nanocrystals on photocatalytic activity is important in regard to enhanced solar energy capture and utilization but has been scarcely addressed in the past. The photocatalytic rate was found to have no dependence on ZnO particle size, but the shape factor seems to be of overriding importance. Hexagonal platelike nanocrystals were found to display at least 5 times higher activity than rod-shaped crystals, which clearly suggests that the polar (001) and (001) faces are more active surfaces than the nonpolar surfaces perpendicular to them.

978 citations

References
More filters
Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
Xiangfeng Duan1, Yu Huang1, Yi Cui1, Jianfang Wang1, Charles M. Lieber1 
04 Jan 2001-Nature
TL;DR: The assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping are reported, and electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.
Abstract: Nanowires and nanotubes carry charge and excitons efficiently, and are therefore potentially ideal building blocks for nanoscale electronics and optoelectronics. Carbon nanotubes have already been exploited in devices such as field-effect and single-electron transistors, but the practical utility of nanotube components for building electronic circuits is limited, as it is not yet possible to selectively grow semiconducting or metallic nanotubes. Here we report the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping. Gate-voltage-dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires function as nanoscale field-effect transistors, and can be assembled into crossed-wire p-n junctions that exhibit rectifying behaviour. Significantly, the p-n junctions emit light strongly and are perhaps the smallest light-emitting diodes that have yet been made. Finally, we show that electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.

3,280 citations

Journal ArticleDOI
TL;DR: In this article, the authors fabricated field effect transistors based on individual single and multi-wall carbon nanotubes and analyzed their performance, showing that structural deformations can make them operate as field-effect transistors.
Abstract: We fabricated field-effect transistors based on individual single- and multi-wall carbon nanotubes and analyzed their performance. Transport through the nanotubes is dominated by holes and, at room temperature, it appears to be diffusive rather than ballistic. By varying the gate voltage, we successfully modulated the conductance of a single-wall device by more than 5 orders of magnitude. Multi-wall nanotubes show typically no gate effect, but structural deformations—in our case a collapsed tube—can make them operate as field-effect transistors.

2,771 citations

Journal ArticleDOI
03 Apr 1997-Nature
TL;DR: In this article, electrical transport measurements on individual single-wall nanotubes have been performed to confirm the theoretical predictions of single-walled nanotube quantum wires, and they have been shown to act as genuine quantum wires.
Abstract: Carbon nanotubes have been regarded since their discovery1 as potential molecular quantum wires. In the case of multi-wall nanotubes, where many tubes are arranged in a coaxial fashion, the electrical properties of individual tubes have been shown to vary strongly from tube to tube2,3, and to be characterized by disorder and localization4. Single-wall nanotubes5,6 (SWNTs) have recently been obtained with high yields and structural uniformity7. Particular varieties of these highly symmetric structures have been predicted to be metallic, with electrical conduction occurring through only two electronic modes8–10. Because of the structural symmetry and stiffness of SWNTs, their molecular wavefunctions may extend over the entire tube. Here we report electrical transport measurements on individual single-wall nanotubes that confirm these theoretical predictions. We find that SWNTs indeed act as genuine quantum wires. Electrical conduction seems to occur through well separated, discrete electron states that are quantum-mechanically coherent over long distance, that is at least from contact to contact (140nm). Data in a magnetic field indicate shifting of these states due to the Zeeman effect.

2,678 citations