scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Natural convection in a cubical porous cavity with partially active lateral walls

TL;DR: In this article, a finite volume based numerical solution is obtained and the results are analyzed through temperature, velocity and Nusselt number plots, and it is found that the heat transfer rate across the cavity increases against S, the heater/cooler size.
About: This article is published in International Communications in Heat and Mass Transfer.The article was published on 2017-01-01. It has received 2 citations till now. The article focuses on the topics: Combined forced and natural convection & Natural convection.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the interaction effects of surface radiation with natural convection of a transparent medium in an asymmetrically cooled square cavity including a partially heated inner circular cylinder have been studied.
Abstract: The interaction effects of surface radiation with natural convection of a transparent medium in an asymmetrically cooled square cavity including a partially heated inner circular cylinder have been...

5 citations

Journal ArticleDOI
TL;DR: In this article, a numerical analysis of free convection of air in an isothermal horizontal cylinder, cooled and heated at different wall locations is presented. And the effect of Rayleigh number on heat transfer and fluid flow characteristics within the cavity is investigated.
Abstract: The current study reports a numerical analysis of free convection of air in an isothermal horizontal cylinder, cooled and heated at different wall locations. Three heater sizes are discussed in this study. The first heated zone is spread across one-quarter of the sidewall; the second is uniformly distributed over the half of the wall and the third active wall covers three-quarters of the cylinder. Five various locations are considered and examined for each active zone of the sidewall. The computation is carried out for Rayleigh number ranging from 102 to 106. Numerical results characterizing heat transfer and flow features are achieved using an iterative model developed in COMSOL Multiphysics. The effect of Rayleigh number on heat transfer and fluid flow characteristics within the cavity are investigated. Particular attention is paid to the influence of heater location and heater size on energy efficiency. It is found that the mean Nusselt number and dimensionless velocity increase when increasing the Rayleigh number. Moreover, the optimal level of energy efficiency is achieved if the heating zone is centered at the upper part of the cylinder, regardless of the heater size. It is also shown that the optimal configuration providing higher energy efficiency is obtained when three-quarters of the sidewall are locally heated, and more precisely, if the active zone is centered at the top of the cylinder.

4 citations

References
More filters
Book
01 Jan 1980
TL;DR: In this article, the authors focus on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms.
Abstract: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

21,858 citations

Book
01 Jan 1992
TL;DR: In this paper, an introduction to convection in porous media assumes the reader is familiar with basic fluid mechanics and heat transfer, going on to cover insulation of buildings, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering and the storage of heat-generating materials like grain and coal.
Abstract: This introduction to convection in porous media assumes the reader is familiar with basic fluid mechanics and heat transfer, going on to cover insulation of buildings, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering and the storage of heat-generating materials like grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches. The book is intended to be used as a reference, a tutorial work or a textbook for graduates.

5,570 citations

BookDOI
23 Jun 2015
TL;DR: Theoretical analysis of transport in Porous Media: Multiscale Modeling of Porous Medium Systems as discussed by the authors is a multiscale approach for modelling Porous medium systems.
Abstract: General Characteristics and Modeling of Porous Media Multiscale Modeling of Porous Medium Systems Amanda L. Dye, James E. McClure, William G. Gray, and Cass T. Miller Advanced Theories of Two-Phase Flow in Porous Media S. Majid Hassanizadeh Characterization of Fractures and Fracture Network of Porous Media Muhammad Sahimi Thin Porous Media Marc Prat and Tristan Agaesse Magnetically Stabilized and Fluidized Beds in Science and Technology: A Review Teresa Castelo-Grande, Paulo A. Augusto, Angel M. Estevez, Domingos Barbosa, Jesus Ma. Rodriguez, Audelino Alvaro, and Carmen Torrente Lift Generation in Highly Compressible Porous Media: From Red Cells to Skiing to Soft Lubrication Qianhong Wu Transport in Porous Media Theoretical Analysis of Transport in Porous Media: Multiequation and Hybrid Models for a Generic Transport Problem with Nonlinear Source Terms Yohan Davit and Michel Quintard Porous Media Theory for Membrane Transport Phenomena A. Nakayama, Y. Sano, T. Nishimura, and K. Nagase Effective Transport Properties of Porous Media by Modeling Moran Wang Effective Transport through Porous Media under Nonequilibrium Relaxation Conditions Faruk Civan Modeling Approach for Gradient-Based Motion of Microorganisms in Porous Media and Applications in Biosystems Zineddine Alloui and Tri Nguyen-Quang Turbulence in Porous Media Feedback Control for Promoting or Suppressing the Transition to Weak Turbulence in Porous Media Convection Peter Vadasz Advances in Modeling Turbulence Phenomena in Heterogeneous Media: Reactive Systems Marcelo J.S. de Lemos Heat Transfer of Nanofluids in Porous Media Effects of Nanofluids on Convection in Porous Media A. Nield and A.V. Kuznetsov Analyzing Nanofluids Suspension Using the Porous Media Interface Heat Transfer Model Peter Vadasz Thermal Transport in Porous Media Thermal Transport in Highly Porous Cellular Materials Raymond Viskanta Convection of a Bingham Fluid in a Porous Medium Andrew S. Rees High-Heat-Flux Distributed Capillary Artery Evaporators Gisuk Hwang, Chanwoo Park, and Massoud Kaviany Impinging Jets in Porous Media Bernardo Buonomo, Oronzio Manca, and Sergio Nardini Thermohydromechanical Behavior of Poroelastic Media A. Patrick S. Selvadurai Thermogravitational Diffusion in a Porous Medium Saturated by a Binary Fluid Abdelkader Mojtabi, Marie Catherine Charrier-Mojtabi, Bilal El Hajjar, and Yazdan Pedram Razi Geological Applications in Porous Media Digital Petrophysics: Imaging, Modeling, and Experimental Challenges Related to Porous Media in Oil Fields Peter Tilke Modeling of Subsurface CO2 Migration at Geological Carbon Sequestration Sites in Deep Saline Aquifers Sumit Mukhopadhyay Groundwater Flows and Velocity Measurements Shigeo Kimura Geostatistical Simulation and Reconstruction of Porous Media Pejman Tahmasebi and Muhammad Sahimi Microbially Induced Carbonate Precipitation in the Subsurface: Fundamental Reaction and Transport Processes James Connolly and Robin Gerlach

1,560 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution, finite difference numerical study is reported on three-dimensional steady-state natural convection of air, for the Rayleigh number range 103⩽ Ra ⩽ 106, in a cubical enclosure, which is heated differentially at two vertical side walls.

534 citations

Journal ArticleDOI
TL;DR: In this article, the relative importance of inertia and viscous forces on natural convection in porous media is examined via the Darcy-Brinkman-Forchheimer solutions for a differentially heated vertical cavity.

215 citations