Natural Text-to-Speech Synthesis by Conditioning Spectrogram Predictions from Transformer Network on WaveGlow Vocoder
14 Nov 2020-
...read more
References
More filters
Posted Content•
[...]
TL;DR: In this paper, the authors propose to use a soft-searching model to find the parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Abstract: Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.
14,077 citations
[...]
12 Sep 2016
TL;DR: WaveNet, a deep neural network for generating raw audio waveforms, is introduced; it is shown that it can be efficiently trained on data with tens of thousands of samples per second of audio, and can be employed as a discriminative model, returning promising results for phoneme recognition.
Abstract: This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the
predictive distribution for each audio sample conditioned on all previous ones;
nonetheless we show that it can be efficiently trained on data with tens of
thousands of samples per second of audio. When applied to text-to-speech, it
yields state-of-the-art performance, with human listeners rating it as
significantly more natural sounding than the best parametric and concatenative
systems for both English and Mandarin. A single WaveNet can capture the
characteristics of many different speakers with equal fidelity, and can switch
between them by conditioning on the speaker identity. When trained to model
music, we find that it generates novel and often highly realistic musical
fragments. We also show that it can be employed as a discriminative model,
returning promising results for phoneme recognition.
3,246 citations
"Natural Text-to-Speech Synthesis by..." refers methods in this paper
[...]
[...]
Posted Content•
[...]
TL;DR: This paper proposed WaveNet, a deep neural network for generating audio waveforms, which is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones.
Abstract: This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.
2,744 citations
Proceedings Article•
[...]
TL;DR: The authors introduced an architecture based entirely on convolutional neural networks, where computations over all elements can be fully parallelized during training and optimization is easier since the number of nonlinearities is fixed and independent of the input length.
Abstract: The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.
1,542 citations
Posted Content•
[...]
TL;DR: The attention-mechanism is extended with features needed for speech recognition and a novel and generic method of adding location-awareness to the attention mechanism is proposed to alleviate the issue of high phoneme error rate.
Abstract: Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the at- tention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.
1,447 citations
Related Papers (5)
[...]
[...]
[...]