scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Natural triple excitations in local coupled cluster calculations with pair natural orbitals

01 Oct 2013-Journal of Chemical Physics (American Institute of Physics)-Vol. 139, Iss: 13, pp 134101-134101
TL;DR: The extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster ( DLPNO-CCSD) method to perturbatively include connected triple excitations is reported and the first CCSD(T) level calculation on an entire protein, Crambin with 644 atoms, and more than 6400 basis functions is demonstrated.
Abstract: In this work, the extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster (DLPNO-CCSD) method to perturbatively include connected triple excitations is reported. The development is based on the concept of triples-natural orbitals that span the joint space of the three pair natural orbital (PNO) spaces of the three electron pairs that are involved in the calculation of a given triple-excitation contribution. The truncation error is very smooth and can be significantly reduced through extrapolation to the zero threshold. However, the extrapolation procedure does not improve relative energies. The overall computational effort of the method is asymptotically linear with the system size O(N). Actual linear scaling has been confirmed in test calculations on alkane chains. The accuracy of the DLPNO-CCSD(T) approximation relative to semicanonical CCSD(T0) is comparable to the previously developed DLPNO-CCSD method relative to canonical CCSD. Relative energies are predicted with an average error of approximately 0.5 kcal∕mol for a challenging test set of medium sized organic molecules. The triples correction typically adds 30%-50% to the overall computation time. Thus, very large systems can be treated on the basis of the current implementation. In addition to the linear C150H302 (452 atoms, >8800 basis functions) we demonstrate the first CCSD(T) level calculation on an entire protein, Crambin with 644 atoms, and more than 6400 basis functions.
Citations
More filters
Journal ArticleDOI
Frank Neese1
TL;DR: This short update provides an overview of the capabilities that have been added to the ORCA electronic structure package (version 4.0) since publication of the first article in 2012.
Abstract: This short update provides an overview of the capabilities that have been added to the ORCA electronic structure package (version 4.0) since publication of the first article in 2012. WIREs Comput Mol Sci 2018, 8:e1327. doi: 10.1002/wcms.1327 This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory Software > Quantum Chemistry

3,241 citations

Journal ArticleDOI
TL;DR: An extended semiempirical tight-binding model is presented, which is primarily designed for the fast calculation of structures and noncovalent interaction energies for molecular systems with roughly 1000 atoms and which relies solely on global and element-specific parameters.
Abstract: An extended semiempirical tight-binding model is presented, which is primarily designed for the fast calculation of structures and noncovalent interaction energies for molecular systems with roughly 1000 atoms. The essential novelty in this so-called GFN2-xTB method is the inclusion of anisotropic second order density fluctuation effects via short-range damped interactions of cumulative atomic multipole moments. Without noticeable increase in the computational demands, this results in a less empirical and overall more physically sound method, which does not require any classical halogen or hydrogen bonding corrections and which relies solely on global and element-specific parameters (available up to radon, Z = 86). Moreover, the atomic partial charge dependent D4 London dispersion model is incorporated self-consistently, which can be naturally obtained in a tight-binding picture from second order density fluctuations. Fully analytical and numerically precise gradients (nuclear forces) are implemented. The...

1,328 citations

Journal ArticleDOI
TL;DR: In this contribution to the special software-centered issue, the ORCA program package is described, which is a widely used program in various areas of chemistry and spectroscopy with a current user base of over 22 000 registered users in academic research and in industry.
Abstract: In this contribution to the special software-centered issue, the ORCA program package is described. We start with a short historical perspective of how the project began and go on to discuss its current feature set. ORCA has grown into a rather comprehensive general-purpose package for theoretical research in all areas of chemistry and many neighboring disciplines such as materials sciences and biochemistry. ORCA features density functional theory, a range of wavefunction based correlation methods, semi-empirical methods, and even force-field methods. A range of solvation and embedding models is featured as well as a complete intrinsic to ORCA quantum mechanics/molecular mechanics engine. A specialty of ORCA always has been a focus on transition metals and spectroscopy as well as a focus on applicability of the implemented methods to "real-life" chemical applications involving systems with a few hundred atoms. In addition to being efficient, user friendly, and, to the largest extent possible, platform independent, ORCA features a number of methods that are either unique to ORCA or have been first implemented in the course of the ORCA development. Next to a range of spectroscopic and magnetic properties, the linear- or low-order single- and multi-reference local correlation methods based on pair natural orbitals (domain based local pair natural orbital methods) should be mentioned here. Consequently, ORCA is a widely used program in various areas of chemistry and spectroscopy with a current user base of over 22 000 registered users in academic research and in industry.

1,308 citations

Journal ArticleDOI
TL;DR: The importance of better reference values is demonstrated, and the need for London-dispersion corrections in density functional theory (DFT) treatments of thermochemical problems is re-emphasised, to inspire a change in the user community's perception of common DFT methods.
Abstract: We present the GMTKN55 benchmark database for general main group thermochemistry, kinetics and noncovalent interactions. Compared to its popular predecessor GMTKN30 [Goerigk and Grimme J. Chem. Theory Comput., 2011, 7, 291], it allows assessment across a larger variety of chemical problems—with 13 new benchmark sets being presented for the first time—and it also provides reference values of significantly higher quality for most sets. GMTKN55 comprises 1505 relative energies based on 2462 single-point calculations and it is accessible to the user community via a dedicated website. Herein, we demonstrate the importance of better reference values, and we re-emphasise the need for London-dispersion corrections in density functional theory (DFT) treatments of thermochemical problems, including Minnesota methods. We assessed 217 variations of dispersion-corrected and -uncorrected density functional approximations, and carried out a detailed analysis of 83 of them to identify robust and reliable approaches. Double-hybrid functionals are the most reliable approaches for thermochemistry and noncovalent interactions, and they should be used whenever technically feasible. These are, in particular, DSD-BLYP-D3(BJ), DSD-PBEP86-D3(BJ), and B2GPPLYP-D3(BJ). The best hybrids are ωB97X-V, M052X-D3(0), and ωB97X-D3, but we also recommend PW6B95-D3(BJ) as the best conventional global hybrid. At the meta-generalised-gradient (meta-GGA) level, the SCAN-D3(BJ) method can be recommended. Other meta-GGAs are outperformed by the GGA functionals revPBE-D3(BJ), B97-D3(BJ), and OLYP-D3(BJ). We note that many popular methods, such as B3LYP, are not part of our recommendations. In fact, with our results we hope to inspire a change in the user community's perception of common DFT methods. We also encourage method developers to use GMTKN55 for cross-validation studies of new methodologies.

1,079 citations

Journal ArticleDOI
TL;DR: This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications.
Abstract: Mean-field electronic structure methods like Hartree–Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for furthe...

932 citations

References
More filters
Journal ArticleDOI
TL;DR: A large set of more than 300 molecules representing all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table, and recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.
Abstract: Gaussian basis sets of quadruple zeta valence quality for Rb-Rn are presented, as well as bases of split valence and triple zeta valence quality for H-Rn. The latter were obtained by (partly) modifying bases developed previously. A large set of more than 300 molecules representing (nearly) all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table. Quantities investigated were atomization energies, dipole moments and structure parameters for Hartree-Fock, density functional theory and correlated methods, for which we had chosen Moller-Plesset perturbation theory as an example. Finally recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.

17,964 citations

Journal ArticleDOI
Frank Neese1
TL;DR: An overview of the current possibilities of ORCA is provided and its efficiency is documents.
Abstract: ORCA is a general-purpose quantum chemistry program package that features virtually all modern electronic structure methods (density functional theory, many-body perturbation and coupled cluster theories, and multireference and semiempirical methods). It is designed with the aim of generality, extendibility, efficiency, and user friendliness. Its main field of application is larger molecules, transition metal complexes, and their spectroscopic properties. ORCA uses standard Gaussian basis functions and is fully parallelized. The article provides an overview of its current possibilities and documents its efficiency. © 2011 John Wiley & Sons, Ltd.

8,821 citations

Journal ArticleDOI
TL;DR: In this article, the essential aspects of coupled-cluster theory are explained and illustrated with informative numerical results, showing that the theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules.
Abstract: Today, coupled-cluster theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules. Though it was originally proposed for problems in physics, it has seen its greatest development in chemistry, enabling an extensive range of applications to molecular structure, excited states, properties, and all kinds of spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with informative numerical results.

2,667 citations

Journal ArticleDOI
TL;DR: In this article, the chain-of-spheres exchange (COSX) algorithm was proposed to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations.

1,813 citations

Journal ArticleDOI
TL;DR: Three-center approximations to the four-center integrals occurring in ab initio LCAO calculations are investigated in this paper, where significant gains in computer time can be obtained without sacrificing accuracy, if a suitable expansion basis is chosen.

1,474 citations