scispace - formally typeset
Search or ask a question
Book ChapterDOI

Nature and dynamics of the spin-state interconversion in metal complexes

01 Jan 1991-ChemInform (Springer, Berlin, Heidelberg)-Vol. 23, Iss: 10, pp 51-152
TL;DR: In this article, the Bragg and Williams approximation of the Ising model is used to describe spin-state transitions in metal complexes which are driven by a change of temperature T or pressure p are always associated with a considerable reorganization of molecular geometry, the change involves metal-ligand bond lengths R, bond angles and a variation of ligand orientation.
Abstract: Spin-state transitions in metal complexes which are driven by a change of temperature T or pressure p are always associated with a considerable reorganization of molecular geometry. The change involves metal-ligand bond lengths R, bond angles, and a variation of ligand orientation. In particular, the elongation 4R by up to ∼ 10% occurring in the course of the LS → HS conversion produces an expansion of molecular volume ΔV ≌ 25 A3 per metal atom. The average crystal structure for given values of T and p is reproduced by the fractional occupancy of the individual structures of the high-spin (HS) and low-spin (LS) isomer. The transitions are reasonably well described by a number of theoretical models which are equivalent to the Bragg and Williams approximation of the Ising model. The dynamics of the spin-state transitions in solution, based on measurements by ultrasonic and photo-perturbation techniques, is in general rapid with rate constants between 4 × 105 and 3 × 108 s−1. Similar results are obtained for the spin conversion in solid complexes where the line shape analysis of Mossbauer spectra based on the theory of Blume and Tjon is applied. The dynamics may be rationalized employing one-dimensional cross sections through Gibbs free-energy surfaces G = G(R), an alternative being the comparison of the results with quantum-mechanical calculations for a radiationless non-adiabatic multiphonon process.
Citations
More filters
Journal ArticleDOI
02 Jan 1998-Science
TL;DR: In this article, the transition temperature of transition metal compounds can be fine tuned using an approach based on the concept of a molecular alloy, and it is possible to design a compound for which room temperature falls in the middle of the thermal hysteresis loop.
Abstract: Some 3dn (4 ≤ n ≤ 7) transition metal compounds exhibit a cooperative transition between a low-spin (LS) and a high-spin (HS) state. This transition is abrupt and occurs with a thermal hysteresis, which confers a memory effect on the system. The intersite interactions and thus the cooperativity are magnified in polymeric compounds such as [Fe(Rtrz)3]A2·nH2O in which the Fe2+ ions are triply bridged by 4-R-substituted-1,2,4-triazole molecules. Moreover, in these compounds, the spin transition is accompanied by a well-pronounced change of color between violet in the LS state and white in the HS state. The transition temperatures of these materials can be fine tuned, using an approach based on the concept of a molecular alloy. In particular, it is possible to design a compound for which room temperature falls in the middle of the thermal hysteresis loop. These materials have many potential applications, for example, as temperature sensors, as active elements of various types of displays, and in information storage and retrieval.

1,934 citations

Journal ArticleDOI
TL;DR: This critical review discusses recent work in the field of molecule-based spin crossover materials with a special focus on these emerging issues, including chemical synthesis, physical properties and theoretical aspects as well (223 references).
Abstract: Recently we assisted a strong renewed interest in the fascinating field of molecular spin crossover complexes by (1) the emergence of nanosized spin crossover materials through direct synthesis of coordination nanoparticles and nanopatterned thin films as well as by (2) the use of novel sophisticated high spatial and temporal resolution experimental techniques and theoretical approaches for the study of spatiotemporal phenomena in cooperative spin crossover systems. Besides generating new fundamental knowledge on size-reduction effects and the dynamics of the spin crossover phenomenon, this research aims also at the development of practical applications such as sensor, display, information storage and nanophotonic devices. In this critical review, we discuss recent work in the field of molecule-based spin crossover materials with a special focus on these emerging issues, including chemical synthesis, physical properties and theoretical aspects as well (223 references).

1,084 citations

Journal ArticleDOI
TL;DR: The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere, and the variety of physical techniques usually applied for their characterization.
Abstract: The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligoand polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

586 citations

Journal ArticleDOI
14 Apr 1995-Science
TL;DR: Variable-temperature magnetic susceptibility measurements and M�ssbauer studies reveal that this compound shows low-spin to high-spin crossover behavior in the temperature range from 100 to 250 kelvin, fundamental for the interpretation of the mechanism leading to the spin crossover.
Abstract: The compound [Fe(tvp)(2)(NCS)(2)] . CH(3)OH, where tvp is 1,2-di-(4-pyridyl)-ethylene, has been synthesized and characterized by x-ray single-crystal diffraction. It consists of two perpendicular, two-dimensional networks organized in parallel stacks of sheets made up of edge-shared [Fe(II)](4) rhombuses. The fully interlocked networks define large square channels in the [001] direction. Variable-temperature magnetic susceptibility measurements and Mossbauer studies reveal that this compound shows low-spin to high-spin crossover behavior in the temperature range from 100 to 250 kelvin. The combined structural and magnetic characterization of this kind of compound is fundamental for the interpretation of the mechanism leading to the spin crossover, which is important in the development of electronic devices such as molecular switches.

556 citations

References
More filters
Book
01 Jan 1961
TL;DR: In this paper, the strong-filed coupling scheme was proposed to overcome the weak-field coupling scheme in paramagnetic resonance, which was shown to be effective in the case of free atoms and ions.
Abstract: Preface 1. Introduction 2. Angular momentum and related matters 3. Electromagnetic radiation 4. The structure of free atoms and ions 5. Magnetic effects in atomic structure 6. Groups and their matrix representations 7. Complex ions 8. Crystal-field theory and the weak-field coupling scheme 9. The strong-filed coupling scheme 10. Paramagnetic susceptibilities 11. Optical spectra and thermodynamic properties 12. Paramagnetic resonance Appendices 1-9 Bibliography Indexes.

2,489 citations

Book ChapterDOI
TL;DR: In this paper, the authors present a discussion on the continuum theory of lattice defects, which is the usual theory of elasticity modified to include internal stress, and discuss some of the background principles and illustrates them by specific examples.
Abstract: Publisher Summary The chapter presents a discussion on the continuum theory of lattice defects. The continuum analog of a crystal containing imperfections is an elastic body in a state of stress not produced by surface and body forces. The appropriate tool for handling the “continuum theory of lattice defects” is thus the usual theory of elasticity modified to include internal stress. Unlike the residual stresses encountered in engineering practice, these internal stresses have to be considered as capable of moving about in the medium. Recent interest in solid state physics has stimulated further development. The discussion of this chapter emphasizes on some of the background principles and illustrates them by specific examples chosen to bring out the peculiar features involved. Naturally, the continuum theory can hardly be expected to answer questions of current interest about the more intimate behavior of lattice defects (for example, the binding energy of two adjacent point defects). On the other hand, the theory perhaps suffers from the disadvantage that its limitations are more immediately obvious than are those of other approximate methods that have to be used in dealing with the solid state, for it sometimes gives good results even in what appear to be extreme cases. The theory of elasticity is concerned with the relation between the deformation of a body and the energy content of itself and its surroundings. The chapter also discusses specification of internal stress, including the Somigliana dislocations and the incompatibility tensor.

1,622 citations