scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Near Earth Asteroids with measurable Yarkovsky effect

TL;DR: In this article, the Yarkovsky effect among near Earth asteroids (NEAs) was investigated by measuring the YARKovsky-related orbital drift from the orbital fit using a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms.
About: This article is published in Icarus.The article was published on 2013-05-01 and is currently open access. It has received 140 citations till now. The article focuses on the topics: Yarkovsky effect & Near-Earth object.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present statistics of the asteroids observed and discovered at the Baldone Observatory, Latvia, in 2008-2013 within the project for astrometric observations of the near-Earth objects (NEOs), the main belt asteroids and comets.
Abstract: Abstract The paper presents statistics of the asteroids observed and discovered at the Baldone Observatory, Latvia, in 2008–2013 within the project for astrometric observations of the near-Earth objects (NEOs), the main belt asteroids and comets. CCD observations of the asteroids were obtained with the 0.80/1.20 m, f/3 Schmidt telescope and a ST-10XME 15 × 10 mm CCD camera. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2008–2013) we published 3511 astrometric positions of 826 asteroids. Among them, 43 asteroids were newly discovered at Baldone. For 36 of these asteroids the precise orbits are calculated. Because of short observational arc and small number of observations, a few asteroids have low-precision orbits and their tracks have been lost. For seven objects with poorly known orbits we present their ephemerides for 2015–2016. The orbits and the evolution of orbital elements of two asteroids, (428694) 2008 OS9 from the Apollo group and the Centaur (330836) Orius (2009 HW77), are recalculated including new observations obtained after 2011.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the dynamic evolution of a number of young asteroid pairs in close orbits in order to constrain their ages, and used several methods of pair selection and estimation of their age.
Abstract: We analyzed the dynamic evolution of a number of young asteroid pairs in close orbits in order to constrain their ages. Several methods of pair selection and estimation of their age are used: analysis of convergence of orbital elements; estimation of the Kholshevnikov metrics in the space of Keplerian orbital elements; estimation of relative distances and velocities at the moments of asteroid close approaches. Estimates of the age of asteroid pairs are obtained depending on the drift velocities of the semimajor axes of the orbits, due to the Yarkovsky effect.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the results of orbital evolution construction for Near Earth asteroid (NEA) 137924 2000 BD19 with a small perihelion distance on the interval (−7500, 5000) years were revealed.

2 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the applicability of the NEATM and the FRM to thermal-infrared observations of Near-Earth Objects using synthetic asteroids with properties based on the real Near Earth Asteroid (NEA) population.
Abstract: The majority of known asteroid diameters are derived from thermal-infrared observations. Diameters are derived using asteroid thermal models that approximate their surface temperature distributions and compare the measured thermal-infrared flux with model-dependent predictions. The most commonly used thermal model is the Near-Earth Asteroid Thermal Model (NEATM), which is usually perceived as superior to other models like the Fast-Rotating Model (FRM). We investigate the applicability of the NEATM and the FRM to thermal-infrared observations of Near-Earth Objects using synthetic asteroids with properties based on the real Near-Earth Asteroid (NEA) population. We find the NEATM to provide more accurate diameters and albedos than the FRM in most cases, with a few exceptions. The modeling results are barely affected by the physical properties of the objects, but we find a large impact of the solar phase angle on the modeling results. We conclude that the NEATM provides statistically more robust diameter estimates for NEAs observed at solar phase angles less than ~65{\deg}, while the FRM provides more robust diameter estimates for solar phase angles greater than ~65{\deg}. We estimate that <5% of all NEA diameters and albedos derived up to date are affected by systematic effects that are of the same order of magnitude as the typical thermal model uncertainties. We provide statistical correction functions for diameters and albedos derived using the NEATM and FRM as a function of solar phase angle.

2 citations


Cites result from "Near Earth Asteroids with measurabl..."

  • ...We draw ecliptic spin axis latitudes from a second-order polynomial distribution fit- ted to the obliquity distribution derived by Farnocchia et al. (2013) (their Figure 6); this distribution is in agreement with later findings (Tardioli et al. 2017)....

    [...]

Journal ArticleDOI
01 Jun 2022-Icarus
TL;DR: In this article , a full numerical simulation of a possible onboard radio science experiment to obtain the GM value of this tiny asteroid with a relative accuracy of ~10% was performed, which can be used to constrain the internal structure of the asteroid.

2 citations

References
More filters
Book
01 Jan 1981
TL;DR: In this paper, the authors provide a complete treatment of techniques for analyzing gravitation theory and experience, taking into account the Dicke framework, basic criteria for the viability of a gravitation theories, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973).
Abstract: New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

1,692 citations

Journal ArticleDOI
01 Apr 2002-Icarus
TL;DR: In this article, a best-fit model of the near-Earth objects (NEOs) population is presented, which is fit to known NEs discovered or accidentally rediscovered by Spacewatch.

717 citations


"Near Earth Asteroids with measurabl..." refers background or methods in this paper

  • ...This excess of retrograde rotators can be explained by the nature of resonance feeding into the inner Solar System (Bottke et al., 2002). Most of the primary NEA source regions (e.g., the 3:1 resonance, JFCs, Outer Belt, etc.) allow main belt asteroids to enter by drifting either inwards or outwards, but the m6 resonance is at the inner edge of the main belt and so asteroids can generally enter only by inwards drift, i.e., with retrograde rotation. Bottke et al. (2002) report that 37% of NEAs with absolute magnitude H < 22 arrive via m6 resonance. La Spina et al. (2004) point out that this implies 37% of NEAs have retrograde spin (via m6), plus half of the complement (via other pathways). Thus, the retrograde fraction should be 0.37 + 0.5 0.63 = 0.69, while La Spina et al. (2004) report 67% retrograde for their sample, which is dominated by large NEAs. Table 2 contains 81% retrograde rotators, which is larger than 69% and thus, at face value, appears to be inconsistent with the theory. The sample of asteroids shown in Table 2, however, is based on measured Yarkovsky mobility and is not a representative sample of the debiased NEA population as described by Bottke et al. (2002). For example, the sample is dominated by small PHAs (MOID < 0.05 AU) on fairly deep Earth-crossing orbits. We find that 9 of the 21 objects are Aten asteroids (43%), compared to the 6% fraction predicted for the debiased NEA population. Bottke et al. (2002) suggest that the majority of Atens ( 79%) should come from the innermost region of the main belt where the m6 resonance is located....

    [...]

  • ...This excess of retrograde rotators can be explained by the nature of resonance feeding into the inner Solar System (Bottke et al., 2002)....

    [...]

  • ...This excess of retrograde rotators can be explained by the nature of resonance feeding into the inner Solar System (Bottke et al., 2002). Most of the primary NEA source regions (e.g., the 3:1 resonance, JFCs, Outer Belt, etc.) allow main belt asteroids to enter by drifting either inwards or outwards, but the m6 resonance is at the inner edge of the main belt and so asteroids can generally enter only by inwards drift, i.e., with retrograde rotation. Bottke et al. (2002) report that 37% of NEAs with absolute magnitude H < 22 arrive via m6 resonance....

    [...]

  • ...This excess of retrograde rotators can be explained by the nature of resonance feeding into the inner Solar System (Bottke et al., 2002). Most of the primary NEA source regions (e.g., the 3:1 resonance, JFCs, Outer Belt, etc.) allow main belt asteroids to enter by drifting either inwards or outwards, but the m6 resonance is at the inner edge of the main belt and so asteroids can generally enter only by inwards drift, i.e., with retrograde rotation. Bottke et al. (2002) report that 37% of NEAs with absolute magnitude H < 22 arrive via m6 resonance. La Spina et al. (2004) point out that this implies 37% of NEAs have retrograde spin (via m6), plus half of the complement (via other pathways). Thus, the retrograde fraction should be 0.37 + 0.5 0.63 = 0.69, while La Spina et al. (2004) report 67% retrograde for their sample, which is dominated by large NEAs. Table 2 contains 81% retrograde rotators, which is larger than 69% and thus, at face value, appears to be inconsistent with the theory. The sample of asteroids shown in Table 2, however, is based on measured Yarkovsky mobility and is not a representative sample of the debiased NEA population as described by Bottke et al. (2002). For example, the sample is dominated by small PHAs (MOID < 0....

    [...]

  • ...Bottke et al. (2002) report that 37% of NEAs arrive via ν6 resonance....

    [...]

Journal ArticleDOI
TL;DR: The Yarkovsky and YORP effects are thermal radiation forces and torques that cause small objects to undergo semimajor axis drift and spin vector modifications, respectively, as a function of their spin, orbit, and material properties as discussed by the authors.
Abstract: The Yarkovsky and YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effects are thermal radiation forces and torques that cause small objects to undergo semimajor axis drift and spin vector modifications, respectively, as a function of their spin, orbit, and material properties. These mechanisms help to (a) deliver asteroids (and meteoroids) with diameter D < 40 km from their source locations in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits; (b) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt; (c) modify the rotation rates and obliquities of D < 40 km asteroids; and (d ) allow asteroids to enter into spin-orbit resonances, which affect the evolution of their spin vectors and feedback into the Yarkovsky-driven semimajor axis evolution. Accordingly, we suggest that nongravitational forces should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

661 citations


"Near Earth Asteroids with measurabl..." refers background in this paper

  • ...It is well known that nongravitational forces should be considered as important as collisions and gravitational perturbations for the overall understanding of asteroid evolution (Bottke et al., 2006)....

    [...]

01 Jan 1989
TL;DR: In this paper, the brightness of a rough and porous surface is parameterized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light is scattered among collections of particles.
Abstract: The way an asteroid or other atmosphereless solar system body varies in brightness in response to changing illumination and viewing geometry depends in a very complicated way on the physical and optical properties of its surface and on its overall shape. This paper summarizes the formulation and application of recent photometric models by Hapke (1981, 1984, 1986) and by Lumme and Bowell (1981). In both models, the brightness of a rough and porous surface is parameterized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light is scattered among collections of particles. Both models succeed in their goal of fitting the observed photometric behavior of a wide variety of bodies, but neither has led to a very complete understanding of the properties of asteroid regoliths, primarily because, in most cases, the parameters in the present models cannot be adequately constrained by observations of integral brightness alone over a restricted range of phase angles.

480 citations

Book
31 Jan 2003
TL;DR: In this paper, the authors present algorithms for computing ET-TAI, including the calculation of precision light times and quasar delays, as well as partial derivatives of light times.
Abstract: Foreword. Preface. Acknowledgments. Introduction. Time Scales and Time Differences. Planetary Ephemeris, Small-Body Ephemeris, and Satellite Ephemerides. Spacecraft Ephemeris and Partials File. Geocentric Space-Fixed Position, Velocity, and Acceleration Vectors of Tracking Station. Space-Fixed Position, Velocity, and Acceleration Vectors of a Landed Spacecraft Relative to Center of Mass of Planet, Planetary System, or the Moon. Algorithms for Computing ET-TAI. Light-Time Solution. Angles. Media and Antenna Corrections. Calculation of Precision Light Times and Quasar Delays. Partial Derivatives of Precision Light Times and Quasar Delays. Observables. References. Acronyms. Index.

364 citations