scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

NEIL: Extracting Visual Knowledge from Web Data

01 Dec 2013-pp 1409-1416
TL;DR: NEIL (Never Ending Image Learner), a computer program that runs 24 hours per day and 7 days per week to automatically extract visual knowledge from Internet data, is proposed in an attempt to develop the world's largest visual structured knowledge base with minimum human labeling effort.
Abstract: We propose NEIL (Never Ending Image Learner), a computer program that runs 24 hours per day and 7 days per week to automatically extract visual knowledge from Internet data. NEIL uses a semi-supervised learning algorithm that jointly discovers common sense relationships (e.g., "Corolla is a kind of/looks similar to Car", "Wheel is a part of Car") and labels instances of the given visual categories. It is an attempt to develop the world's largest visual structured knowledge base with minimum human labeling effort. As of 10th October 2013, NEIL has been continuously running for 2.5 months on 200 core cluster (more than 350K CPU hours) and has an ontology of 1152 object categories, 1034 scene categories and 87 attributes. During this period, NEIL has discovered more than 1700 relationships and has labeled more than 400K visual instances.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The Visual Genome dataset as mentioned in this paper contains over 108k images where each image has an average of $35$35 objects, $26$26 attributes, and $21$21 pairwise relationships between objects.
Abstract: Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) to answer correctly that "the person is riding a horse-drawn carriage." In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of $$35$$35 objects, $$26$$26 attributes, and $$21$$21 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs.

3,842 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The task of free-form and open-ended Visual Question Answering (VQA) is proposed, given an image and a natural language question about the image, the task is to provide an accurate natural language answer.
Abstract: We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human performance.

3,513 citations


Cites background from "NEIL: Extracting Visual Knowledge f..."

  • ...However, it includes as building blocks several components that the CV, NLP, and KR [4, 6, 25, 29, 3] communities have made significant progress on during the past few decades....

    [...]

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this paper, the authors introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.
Abstract: A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.

2,393 citations

Posted Content
TL;DR: The task of free-form and open-ended Visual Question Answering (VQA) is proposed, given an image and a natural language question about the image, the task is to provide an accurate natural language answer.
Abstract: We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (this http URL), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (this http URL).

2,365 citations


Cites background from "NEIL: Extracting Visual Knowledge f..."

  • ...However, it includes as building blocks several components that the CV, NLP, and KR [4, 6, 25, 29, 3] communities have made significant progress on during the past few decades....

    [...]

Proceedings ArticleDOI
10 Jul 2017
TL;DR: In this paper, the authors investigated how the performance of current vision tasks would change if this data was used for representation learning and found that the performance on vision tasks increases logarithmically based on volume of training data size.
Abstract: The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10 × or 100 × ? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between ‘enormous data’ and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.

1,954 citations

References
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations


"NEIL: Extracting Visual Knowledge f..." refers background in this paper

  • ...One way to build initial classifiers is via a few manually labeled seed images....

    [...]

  • ...It is an attempt to develop the world’s largest visual structured knowledge base with minimum human labeling effort....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"NEIL: Extracting Visual Knowledge f..." refers methods in this paper

  • ...We also compare the performance of detectors trained after aspect-ratio, HOG clustering and our proposed clustering procedure....

    [...]

  • ...However, clustering using K-means has two issues: (1) High Dimensionality: We use the Color HOG (CHOG) [20] representation and standard distance metrics do not work well in such high-dimensions [10]; (2) Scalability: Most clustering approaches tend to partition the complete feature space....

    [...]

  • ...For the object and attribute section, we use CHOG [20] features with a bin size of 8....

    [...]

  • ...However, instead of using the high-dimensional CHOG representation for clustering, we use the detection signature of each window (represented as a vector of seed detector ELDA scores on the window) to create aK × K affinity matrix....

    [...]

  • ...The feature vector includes 512D GIST [27] features, concatenated with bag of words representations for SIFT [24], HOG [7], Lab color space, and Texton [26]....

    [...]

Journal ArticleDOI
TL;DR: An object detection system based on mixtures of multiscale deformable part models that is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges is described.
Abstract: We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

10,501 citations


"NEIL: Extracting Visual Knowledge f..." refers methods in this paper

  • ...We train the detectors using latent SVM model (without parts) [13]....

    [...]

Journal ArticleDOI
TL;DR: The performance of the spatial envelope model shows that specific information about object shape or identity is not a requirement for scene categorization and that modeling a holistic representation of the scene informs about its probable semantic category.
Abstract: In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a set of perceptual dimensions (naturalness, openness, roughness, expansion, ruggedness) that represent the dominant spatial structure of a scene. Then, we show that these dimensions may be reliably estimated using spectral and coarsely localized information. The model generates a multidimensional space in which scenes sharing membership in semantic categories (e.g., streets, highways, coasts) are projected closed together. The performance of the spatial envelope model shows that specific information about object shape or identity is not a requirement for scene categorization and that modeling a holistic representation of the scene informs about its probable semantic category.

6,882 citations


"NEIL: Extracting Visual Knowledge f..." refers methods in this paper

  • ...The feature vector includes 512D GIST [27] features, concatenated with bag of words representations for SIFT [24], HOG [7], Lab color space, and Texton [26]....

    [...]