scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Neoclassical transport of impurities in tokamak plasmas

01 Sep 1981-Nuclear Fusion (IOP Publishing)-Vol. 21, Iss: 9, pp 1079-1201
TL;DR: In this paper, a closed set of moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two-dimensional motion of the magnetic flux surface geometry.
Abstract: Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small densities nI, of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever . The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e. gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two-dimensional motion of the magnetic flux surface geometry. The effects of neutral-beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of zonal flow phenomena in plasmas is presented in this article, where the focus is on zonal flows generated by drift waves and the back-interaction of ZF on the drift waves, and various feedback loops by which the system regulates and organizes itself.
Abstract: A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, planetary zonal flows are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave–zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying directions for progress in future research.

1,739 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER and compare their predictions with the new experimental results.
Abstract: Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.

943 citations

Journal ArticleDOI
TL;DR: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions.
Abstract: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.

798 citations

Journal ArticleDOI
TL;DR: In this article, a multi-species fluid model is described for the steady state parallel and radial force balance equations in axisymmetric tokamak plasmas, and the bootstrap current, electrical resistivity and particle and heat fluxes are evaluated in terms of the rotation velocities and friction and viscosity coefficients.
Abstract: A multi-species fluid model is described for the steady state parallel and radial force balance equations in axisymmetric tokamak plasmas. The bootstrap current, electrical resistivity, and particle and heat fluxes are evaluated in terms of the rotation velocities and friction and viscosity coefficients. A recent formulation of the neoclassical plasma viscosity for arbitrary shape and aspect ratio (including the unity aspect ratio limit), arbitrary collisionality, and orbit squeezing from strong radial electric fields is used to illustrate features of the model. The bootstrap current for the very low aspect ratio National Spherical Torus Experiment [J. Spitzer et al., Fusion Technol. 30, 1337 (1996)] is compared with other models; the largest differences occur near the plasma edge from treatment of the collisional contributions. The effects of orbit squeezing on bootstrap current, thermal and particle transport, and poloidal rotation are illustrated for an enhanced reverse shear plasma in the Tokamak Fusion Test Reactor [D. Meade and the TFTR Group, Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. I, p. 9]. Multiple charge states of impurities are incorporated using the reduced ion charge state formalism for computational efficiency. Because the force balance equations allow for inclusion of external momentum and heat sources and sinks they can be used for general plasma rotation studies while retaining the multi-species neoclassical effects.

568 citations

Journal ArticleDOI
TL;DR: In this paper, the suppression of turbulence by the E×B flow shear and parallel Flow Shear in an arbitrary shape finite aspect ratio tokamak plasma using the two point nonlinear analysis was investigated.
Abstract: The suppression of turbulence by the E×B flow shear and parallel flow shear is studied in an arbitrary shape finite aspect ratio tokamak plasma using the two point nonlinear analysis previously utilized in a high aspect ratio tokamak plasma [Phys. Plasmas 1, 2940 (1994)]. The result shows that only the E×B flow shear is responsible for the suppression of flute‐like fluctuations. This suppression occurs regardless of the plasma rotation direction and is, therefore, relevant for the very high (VH) mode plasma core as well as for the high (H) mode plasma edge. Experimentally observed in–out asymmetry of fluctuation reduction behavior can be addressed in the context of flux expansion and magnetic field pitch variation on a given flux surface. The adverse effect of neutral particles on confinement improvement is also discussed in the context of the charge exchange induced parallel momentum damping.

552 citations

References
More filters
Book
30 Oct 2012
TL;DR: In this article, Rozhansky et al. studied the relationship between transverse conductivity and the generation of self-consistent electric fields in strongly ionized magnetized plasma.
Abstract: Mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma V. Rozhansky. 1. Introduction.- 2. Conductivity tensor in partially ionized plasma.- 3. Main mechanisms of perpendicular conductivity in fully ionized plasma.- 4. Acceleration of plasma clouds in an inhomogeneous magnetic field.- 5. Alfven conductivity.- 6. Perpendicular viscosity, radial current, and radial electric field in an infinite cylinder.- 7. Current systems in front of a biased electrode (flush-mounted probe) and spot of emission.- 8. Currents in the vicinity of a biased electrode that is smaller than the ion gyroradius.- 9. Neoclassical perpendicular conductivity in a tokamak.- 10. Transverse conductivity in a reversed field pinch.- 11. Modeling of electric field and currents in the tokamak edge plasma.- 12. Mechanisms of anomalous perpendicular viscosity and viscosity-driven currents.- 13. Transverse conductivity in a stochastic magnetic field.- 14. Electric fields generated in the shielding layer between hot plasma and a solid state.-- Correlations and anomalous transport models O.G. Bakunin. 1. Introduction.- 2. Turbulent diffusion and transport.- 3. Non-local effects and diffusion equations.- 4. The Corrsin conjecture.- 5. Effects of seed diffusivity.- 6. The diffusive tracer equation and averaging.- 7. The quasi-linear approximation.- 8. The diffusive renormalization.- 9. Anomalous transport and convective cells.- 10. Stochastic instability and transport.- 11. Fractal conceptions and turbulence.- 12. Percolation and scalings.- 13. Percolation and turbulent transport scalings.- 14. The temporal hierarchy of scales and correlations.- 15. The stochastic magnetic field and percolation transport.- 16. Percolation in drift flows.- 17. Multiscale flows.- 18. Subdiffusion and traps.- 19. Continuous time random walks.- 20. Fractional differential equations and scalings.- 21. Correlation and phase-space.- 22. Conclusion.

3,684 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of mutual electron encounters is considered as a problem of diffusion in velocity space, taking into account a term which previously had been neglected, and the appropriate integro-differential equations are then solved numerically.
Abstract: The coefficients of electrical and thermal conductivity have been computed for completely ionized gases with a wide variety of mean ionic charges. The effect of mutual electron encounters is considered as a problem of diffusion in velocity space, taking into account a term which previously had been neglected. The appropriate integro-differential equations are then solved numerically. The resultant conductivities are very close to the less extensive results obtained with the higher approximations on the Chapman-Cowling method, provided the Debye shielding distance is used as the cutoff in summing the effects of two-body encounters.

1,831 citations

Journal ArticleDOI
TL;DR: A review of magnetized-plasma transport theory can be found in this paper, with a focus on the application to axisymmetric tokamak-type confinement systems.
Abstract: The dissipation induced by coulomb-collisional scattering provides an irreducible minimum, and thus a useful standard for comparison, for transport processes in a hot, magnetically confined plasma. The kinetic description of this dissipation is provided by an equation of the Fokker-Planck form. As in the standard transport theory for a neutral gas, approximate solution of the Fokker-Planck equation permits the calculation of transport coefficients, which linearly relate the fluxes of particles, energy, and electric charge, to the density and temperature gradients, and to the electric field. The transport relations are useful in studying the confinement properties of present and future experimental devices for research in controlled thermonuclear fusion. The transport theory for a magnetized plasma (in which the Larmor radius is much smaller than gradient scale lengths describing the plasma fluid) departs from the theory for a neutral gas in several fundamental ways. Thus, transport coefficients for a magnetized plasma can be calculated even when the collisional mean free path is much longer than the gradient scale length (as would pertain in thermonuclear regimes). Such transport coefficients are generally nonlocal, being defined in terms of averages over surfaces with macroscopic dimensions. Furthermore, when the mean free path is long, the magnetized-plasma transport coefficients depend crucially upon the magnetic field geometry, the effects of which must be treated at the kinetic level of the Fokker-Planck equation. The results display several novel couplings between collisional dissipation and the electromagnetic field. The present review of magnetized-plasma transport theory is intended to be as widely accessible as possible. Thus the relevant features of magnetic confinement in closed (toroidal) systems, and of charged particles in spatially varying fields, are derived, at least in outline, from first principles. Although consideration is given to "classical" transport in which most field geometric effects are omitted, major emphasis is placed on the "neoclassical" theory which has been developed over the last decade. Neoclassical transport coefficients are specifically relevant to a magnetically confined plasma, rather than to just a magnetized plasma; their unusual features, such as nonlocality and geometry dependence, become particularly important in the high temperature regime of proposed thermonuclear reactors. The area of neoclassical theory which seems most complete---its application to axisymmetric tokamak-type confinement systems---is correspondingly stressed.

1,530 citations