scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Network reconfiguration in distribution systems for loss reduction and load balancing

01 Apr 1989-IEEE Power & Energy Magazine (IEEE)-Vol. 4, Iss: 2, pp 1401-1407
TL;DR: Accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations.
Abstract: A general formulation of the feeder reconfiguration problem for loss reduction and load balancing is given, and a novel solution method is presented. The solution uses a search over different radial configurations created by considering switchings of the branch exchange type. To guide the search, two different power flow approximation methods with varying degrees of accuracy have been developed and tested. The methods are used to calculate the new power flow in the system after a branch exchange and they make use of the power flow equations developed for radial distribution systems. Both accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations. For load balancing, a load balance index is defined and it is shown that the search and power flow estimation methods developed for power loss reduction can also be used for load balancing since the two problems are similar. >
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a meta heuristic Harmony Search Algorithm (HSA) is used to simultaneously reconfigure and identify the optimal locations for installation of DG units in a distribution network.
Abstract: This paper presents a new method to solve the network reconfiguration problem in the presence of distributed generation (DG) with an objective of minimizing real power loss and improving voltage profile in distribution system. A meta heuristic Harmony Search Algorithm (HSA) is used to simultaneously reconfigure and identify the optimal locations for installation of DG units in a distribution network. Sensitivity analysis is used to identify optimal location s for installation of DG units. Different scenarios of DG placement and reconfiguration of network are considered to study the performance of the proposed method. The constraints of voltage and branch current carrying capacity are included in the evaluation of the objective function. The method has been tested on 33-bus and 69-bus radial distribution systems at three different load levels to demonstrate the performance and effectiveness of the proposed method. The results obtained are encouraging.

852 citations


Cites methods from "Network reconfiguration in distribu..."

  • ...This test system is a 33-bus radial distribution system [18] with five tie-switches and 32 sectionalizing switches....

    [...]

Journal ArticleDOI
TL;DR: This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms.
Abstract: This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relationships among them. Part II presents sufficient conditions under which the convex relaxations are exact.

796 citations

Journal ArticleDOI
16 May 2011
TL;DR: In this article, the authors discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters, and find that local control schemes are able to maintain voltage within acceptable bounds.
Abstract: High-penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g., by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e., local). In general, we find that local control schemes are able to maintain voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

707 citations

Journal ArticleDOI
TL;DR: In this paper, the loss minimum reconfiguration problem in the open loop radial distribution system is formulated as a mixed integer programming problem and a detailed solution methodology by the use of genetic algorithm is outlined.
Abstract: The loss minimum reconfiguration problem in the open loop radial distribution system is basically one of complex combinatorial optimization, since the normal open sectionalizing switches must be determined appropriately. The genetic algorithm was successfully applied to the loss minimum reconfiguration problem. In the proposed algorithm, strings consist of sectionalizing switch status or radial configurations, and the fitness function consists of the total system losses and penalty value of voltage drop and current capacity violations. The loss minimum reconfiguration problem is formulated as a mixed integer programming problem. The essential components of the genetic algorithm are briefly described. A detailed solution methodology by the use of genetic algorithm is outlined. Numerical examples demonstrate the validity and effectiveness of the proposed methodology. >

700 citations

Journal ArticleDOI
TL;DR: A new optimization approach that employs an artificial bee colony (ABC) algorithm to determine the optimal DG-unit's size, power factor, and location in order to minimize the total system real power loss.
Abstract: Distributed generation (DG) has been utilized in some electric power networks. Power loss reduction, environmental friendliness, voltage improvement, postponement of system upgrading, and increasing reliability are some advantages of DG-unit application. This paper presents a new optimization approach that employs an artificial bee colony (ABC) algorithm to determine the optimal DG-unit's size, power factor, and location in order to minimize the total system real power loss. The ABC algorithm is a new metaheuristic, population-based optimization technique inspired by the intelligent foraging behavior of the honeybee swarm. To reveal the validity of the ABC algorithm, sample radial distribution feeder systems are examined with different test cases. Furthermore, the results obtained by the proposed ABC algorithm are compared with those attained via other methods. The outcomes verify that the ABC algorithm is efficient, robust, and capable of handling mixed integer nonlinear optimization problems. The ABC algorithm has only two parameters to be tuned. Therefore, the updating of the two parameters towards the most effective values has a higher likelihood of success than in other competing metaheuristic methods.

652 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a nonlinear programming problem for capacitors placed on a radial distribution system is formulated and a solution algorithm is developed to find the optimal size of capacitors so that the power losses will be minimized for a given load profile while considering the cost of the capacitors.
Abstract: A capacitor sizing problem for capacitors placed on a radial distribution system is formulated as a nonlinear programming problem, and a solution algorithm is developed. The object is to find the optimal size of the capacitors so that the power losses will be minimized for a given load profile while considering the cost of the capacitors. The formulation also incorporates the AC power flow model for the system and the voltage constraints. The solution algorithm developed for the capacitor sizing problem is based on a Phase I-Phase II feasible directions approach. Novel power flow equations and a solution method, called DistFlow, for radial distribution systems are introduced. The method is computationally efficient and numerically robust, especially for distribution systems with large r/x ratio branches. DistFlow is used repeatedly as a subroutine in the optimization algorithm for the capacitor sizing problem. The test results for the algorithm indicate that the method is computationally efficient and has good convergence characteristics. >

1,391 citations

Journal ArticleDOI
TL;DR: In this paper, a scheme that utilizes feeder reconfiguration as a planning and/or real-time control tool to restructure the primary feeder for loss reduction is presented.
Abstract: Feeder reconfiguration is defined as altering the topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. A scheme is presented that utilizes feeder reconfiguration as a planning and/or real-time control tool to restructure the primary feeder for loss reduction. The mathematical foundation of the scheme is given. The solution is illustrated on simple examples. >

1,297 citations

Journal ArticleDOI
TL;DR: In this article, a fixed charge transshipment problem formulation (FCNP) is used for distribution substation siting and radial feeder planning, where the concept of a long range horizon year is used together with a time-phased expansion process.
Abstract: The planning methodology presented in this paper is an application of recent advances in optimization techniques for distribution substation siting and radial feeder planning. The concept of a long range horizon year (target) is used together with a time-phased expansion process beginning with the base year and progressing to the target year. An optimal static horizon year design is first determined using a fixed charge transshipment problem formulation (FCNP). The FCNP solution methodology employs the branch-and- bound algorithm and includes explicit modeling of fixed charge and variable cost components for improved accu- racy. The time-phased expansion process selects substation sites and feeder routings from the horizon (or target) year plan, thus providing an orderly and coherent expansion. This method easily incorporates existing facilities in the decision process for maximum benefit. An example of an actual planning study is presented to illustrate the horizon year target system selection and the corresponding time-phased expansion patterns.

146 citations

Journal ArticleDOI
TL;DR: In this article, a load balancing of transformers and feeders by automatic sectionalizing of switch operation in large-scale distribution systems of the radial type is discussed, which is applicable to operations not only in the normal state, but also in scheduled and failure outage states.
Abstract: A systematic and practical algorithm for load balancing of transformers and feeders by automatic sectionalizing of switch operation in large-scale distribution systems of the radial type is discussed. The algorithm is developed by extending an approximation for load transfer of the desired two transformers. The algorithm is applicable to operations not only in the normal state, but also in the scheduled and failure outage states. Computational experience on a real large-scale system has indicated that the algorithm is valid and effective for practical operations. >

114 citations