scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Network Robustness and Fragility: Percolation on Random Graphs

18 Dec 2000-Physical Review Letters (American Physical Society)-Vol. 85, Iss: 25, pp 5468-5471
TL;DR: This paper studies percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolators, bond percolations, and models in which occupation probabilities depend on vertex degree.
Abstract: Recent work on the Internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes or links. Such deletions include, for example, the failure of Internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations


Cites background or methods from "Network Robustness and Fragility: P..."

  • ...[15] on subsets of the Web graph, it was quickly realized [81, 93] that the problem of resilience to random failure of vertices in a network is equivalent to a site percolation process on the network....

    [...]

  • ...[81], who showed that, for uniform edge occupation probability T , the distribution of the sizes of clusters (i....

    [...]

  • ...[81], using a generalization of the generating function formalism discussed in Sec....

    [...]

  • ...For example, in a communication network like the Internet the size of the largest component represents the largest fraction of the network within which communication is possible and hence is a measure of the effectiveness of the network at doing its job [74, 81, 93, 94, 125, 323]....

    [...]

  • ...[81] above, allowing us to find a condition for the spread of the initial seed to give a large-scale cascade....

    [...]

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Abstract: The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

7,665 citations

Journal ArticleDOI
TL;DR: This work proposes a model of an assortatively mixed network and finds that networks percolate more easily if they are assortative and that they are also more robust to vertex removal.
Abstract: A network is said to show assortative mixing if the nodes in the network that have many connections tend to be connected to other nodes with many connections. Here we measure mixing patterns in a variety of networks and find that social networks are mostly assortatively mixed, but that technological and biological networks tend to be disassortative. We propose a model of an assortatively mixed network, which we study both analytically and numerically. Within this model we find that networks percolate more easily if they are assortative and that they are also more robust to vertex removal.

4,752 citations

References
More filters
Book
01 Sep 1985

7,736 citations


"Network Robustness and Fragility: P..." refers background in this paper

  • ...The simplest and most widely studied model of undirected networks is the random graph [7], which has been investigated in depth for several decades now....

    [...]

  • ...[7] B....

    [...]