scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: NASS, an integrated framework to search for tailored NN architectures designed specifically for SI, is proposed to model cryptographic protocols as design elements with associated reward functions and is adopted in a joint optimization with predicted hyperparameters.
Abstract: Due to increasing privacy concerns, neural network (NN) based secure inference (SI) schemes that simultaneously hide the client inputs and server models attract major research interests. While existing works focused on developing secure protocols for NN-based SI, in this work, we take a different approach. We propose NASS, an integrated framework to search for tailored NN architectures designed specifically for SI. In particular, we propose to model cryptographic protocols as design elements with associated reward functions. The characterized models are then adopted in a joint optimization with predicted hyperparameters in identifying the best NN architectures that balance prediction accuracy and execution efficiency. In the experiment, it is demonstrated that we can achieve the best of both worlds by using NASS, where the prediction accuracy can be improved from 81.6% to 84.6%, while the inference runtime is reduced by 2x and communication bandwidth by 1.9x on the CIFAR-10 dataset.

22 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...A typical NAS, such as that in [33], is composed of a controller and a trainer....

    [...]

  • ...Existing works have demonstrated that the automatically searched neural architectures can achieve close accuracy to the best human-invented architectures [33,34]....

    [...]

  • ...Recently, Neural Architecture Search (NAS) has been consistently breaking the accuracy records in a variety of machine learning applications, such as image classification [33], image segmentation [18], video action recognition [22], and many more....

    [...]

Proceedings ArticleDOI
03 Jan 2022
TL;DR: This paper explores the feasibility of finding an optimal sub-model from a vision transformer and introduces a pure vision transformer slimming (ViT-Slim) framework that can search a sub-structure from the original model end-to-end across multiple dimensions with state-of-the-art performance.
Abstract: This paper explores the feasibility of finding an optimal sub-model from a vision transformer and introduces a pure vision transformer slimming (ViT-Slim) framework. It can search a sub-structure from the original model end-to-end across multiple dimensions, including the input tokens, MHSA and MLP modules with state-of-the-art performance. Our method is based on a learnable and unified ℓ1sparsity constraint with pre-defined factors to reflect the global importance in the continuous searching space of different dimensions. The searching process is highly efficient through a single-shot training scheme. For instance, on DeiT-S, ViT-Slim only takes ~43 GPU hours for the searching process, and the searched structure is flexible with diverse dimensionalities in different modules. Then, a budget threshold is employed according to the requirements of accuracy-FLOPs trade-off on running devices, and a retraining process is performed to obtain the final model. The extensive experiments show that our ViT-Slim can compress up to 40% of parameters and 40% FLOPs on various vision transformers while increasing the accuracy by ~0.6% on ImageNet. We also demonstrate the advantage of our searched models on several downstream datasets. Our code is available at https://github.com/Arnav0400/ViT-Slim.

22 citations

Posted Content
TL;DR: The proposed novel NAS mechanism, named Low Precision Graph NAS (LPGNAS), constrains both architecture and quantisation choices to be differentiable and shows a better size-accuracy Pareto frontier compared to seven other manual and searched baselines.
Abstract: Deep Graph Neural Networks (GNNs) show promising performance on a range of graph tasks, yet at present are costly to run and lack many of the optimisations applied to DNNs. We show, for the first time, how to systematically quantise GNNs with minimal or no loss in performance using Network Architecture Search (NAS). We define the possible quantisation search space of GNNs. The proposed novel NAS mechanism, named Low Precision Graph NAS (LPGNAS), constrains both architecture and quantisation choices to be differentiable. LPGNAS learns the optimal architecture coupled with the best quantisation strategy for different components in the GNN automatically using back-propagation in a single search round. On eight different datasets, solving the task of classifying unseen nodes in a graph, LPGNAS generates quantised models with significant reductions in both model and buffer sizes but with similar accuracy to manually designed networks and other NAS results. In particular, on the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto frontier compared to seven other manual and searched baselines, offering a 2.3 times reduction in model size but a 0.4% increase in accuracy when compared to the best NAS competitor. Finally, from our collected quantisation statistics on a wide range of datasets, we suggest a W4A8 (4-bit weights, 8-bit activations) quantisation strategy might be the bottleneck for naive GNN quantisations.

22 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...Initial NAS methods used evolutionary algorithms and reinforcement learning to find optimal network architectures, but each iteration of the search fully trains and evaluates many child networks [13, 34], thus needing a huge amount of computation resources and time....

    [...]

Journal ArticleDOI
TL;DR: The HyperNOMAD package is introduced, an extension of the NOMAD software that applies the MADS algorithm to simultaneously tune the hyperparameters responsible for both the architecture and the learning process of a deep neural network (DNN), and that allows for an important flexibility in the exploration of the search space by taking advantage of categorical variables.
Abstract: The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define the structure of the network and the learning process. When facing a new application, tuning a deep neural network is a tedious and time-consuming process that is often described as a “dark art.” This explains the necessity of automating the calibration of these hyperparameters. Derivative-free optimization is a field that develops methods designed to optimize time-consuming functions without relying on derivatives. This work introduces the HyperNOMAD package, an extension of the NOMAD software that applies the MADS algorithm [7] to simultaneously tune the hyperparameters responsible for both the architecture and the learning process of a deep neural network (DNN). This generic approach allows for an important flexibility in the exploration of the search space by taking advantage of categorical variables. HyperNOMAD is tested on the MNIST, Fashion-MNIST, and CIFAR-10 datasets and achieves results comparable to the current state of the art.

22 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Tuning the hyperparameters of the first category alone has led to a separate field of research called Neural Architecture Search (NAS) [25] that allowed achievement of state-ofthe-art performance [53, 65] on some benchmark problems, although at a massive computational cost of 800 GPUs for a few weeks....

    [...]

  • ...For example, the HPO problem can be seen as reinforcement learning [12, 65, 66] where the main difference between each method relies on how the agents are defined and dealt with....

    [...]

Posted Content
TL;DR: This work proposes to search architectures for binary networks (BNAS) by defining a new search space for binary architectures and a novel search objective, and designs a new cell template and proposes to use the Zeroise layer instead of using it as a placeholder.
Abstract: Backbone architectures of most binary networks are well-known floating point architectures such as the ResNet family. Questioning that the architectures designed for floating point networks would not be the best for binary networks, we propose to search architectures for binary networks (BNAS) by defining a new search space for binary architectures and a novel search objective. Specifically, based on the cell based search method, we define the new search space of binary layer types, design a new cell template, and rediscover the utility of and propose to use the Zeroise layer instead of using it as a placeholder. The novel search objective diversifies early search to learn better performing binary architectures. We show that our proposed method searches architectures with stable training curves despite the quantization error inherent in binary networks. Quantitative analyses demonstrate that our searched architectures outperform the architectures used in state-of-the-art binary networks and outperform or perform on par with state-of-the-art binary networks that employ various techniques other than architectural changes.

22 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...2 Efficient Neural Architecture Search We search architectures for binary networks by adopting ideas from neural architecture search (NAS) methods for floating point networks [27, 32, 45, 51, 52]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]