scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Journal ArticleDOI
TL;DR: The experiments showed that the proposed NAS-DBN framework can quickly find a robust architecture of DBN, yielding a hierarchy organization of functional brain networks (FBNs) and temporal responses, and it was observed that widespread overlaps between FBNs from different layers of NAS- DBN model form a hierarchical organization of FBNs.

19 citations

Posted ContentDOI
TL;DR: This work proposes federated neural architecture search (FNAS), where different parties collectively search for a differentiable architecture by exchanging gradients of architecture variables without exposing their data to other parties, and provides theoretical guarantees of DP-FNAS in achieving differential privacy.
Abstract: Neural architecture search, which aims to automatically search for architectures (eg, convolution, max pooling) of neural networks that maximize validation performance, has achieved remarkable progress recently In many application scenarios, several parties would like to collaboratively search for a shared neural architecture by leveraging data from all parties However, due to privacy concerns, no party wants its data to be seen by other parties To address this problem, we propose federated neural architecture search (FNAS), where different parties collectively search for a differentiable architecture by exchanging gradients of architecture variables without exposing their data to other parties To further preserve privacy, we study differentially-private FNAS (DP-FNAS), which adds random noise to the gradients of architecture variables We provide theoretical guarantees of DP-FNAS in achieving differential privacy Experiments show that DP-FNAS can search highly-performant neural architectures while protecting the privacy of individual parties The code is available at https://githubcom/UCSD-AI4H/DP-FNAS

18 citations

Journal Article
TL;DR: This work attempts to interpret modern deep (convolutional) networks from the principles of rate reduction and (shift) invariant classification, and shows that the basic iterative gradient ascent scheme naturally leads to a multi-layer deep network, one iteration per layer.
Abstract: This work attempts to interpret modern deep (convolutional) networks from the principles of rate reduction and (shift) invariant classification. We show that the basic iterative gradient ascent scheme for maximizing the rate reduction of learned features naturally leads to a deep network, one iteration per layer. The architectures, operators (linear or nonlinear), and parameters of the network are all explicitly constructed layer-by-layer in a forward propagation fashion. All components of this ``white box'' network have precise optimization, statistical, and geometric interpretation. Our preliminary experiments indicate that such a network can already learn a good discriminative deep representation without any back propagation training. Moreover, all linear operators of the so-derived network naturally become multi-channel convolutions when we enforce classification to be rigorously shift-invariant. The derivation also indicates that such a convolutional network is significantly more efficient to learn and construct in the spectral domain.

18 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...…even take to the extreme by searching for effective network structures and training strategies through extensive random search techniques, such as Neural Architecture Search (Zoph & Le, 2017; Baker et al., 2017), AutoML (Hutter et al., 2019), and Learning to Learn (Andrychowicz et al., 2016)....

    [...]

  • ...Some recent practices even take to the extreme by searching for effective network structures and training strategies through extensive random search techniques, such as Neural Architecture Search (Zoph & Le, 2017; Baker et al., 2017), AutoML (Hutter et al., 2019), and Learning to Learn (Andrychowicz et al., 2016)....

    [...]

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a new spatial/temporal differentiable neural architecture search algorithm (ST-DARTS) for optimal brain network decomposition, which optimized the inner cell structure of the vanilla recurrent neural network (RNN) in order to effectively decompose spatial and temporal brain function networks from fMRI data.

18 citations

Journal ArticleDOI
TL;DR: A mechanism for automatically tuning the Convolutional Neural Networks (CNN) for improved transfer learning using Bayesian Optimization is introduced and it is depicted that tuning of the pre-trained CNN layers with the knowledge from the target dataset confesses better transfer learning ability.

18 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]