scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: It is shown that mgPFF is able to not only estimate long-range flow for frame reconstruction and detect video shot transitions, but also readily amendable for video object segmentation and pose tracking, where it substantially outperforms the published state-of-the-art without bells and whistles.
Abstract: We introduce multigrid Predictive Filter Flow (mgPFF), a framework for unsupervised learning on videos. The mgPFF takes as input a pair of frames and outputs per-pixel filters to warp one frame to the other. Compared to optical flow used for warping frames, mgPFF is more powerful in modeling sub-pixel movement and dealing with corruption (e.g., motion blur). We develop a multigrid coarse-to-fine modeling strategy that avoids the requirement of learning large filters to capture large displacement. This allows us to train an extremely compact model (4.6MB) which operates in a progressive way over multiple resolutions with shared weights. We train mgPFF on unsupervised, free-form videos and show that mgPFF is able to not only estimate long-range flow for frame reconstruction and detect video shot transitions, but also readily amendable for video object segmentation and pose tracking, where it substantially outperforms the published state-of-the-art without bells and whistles. Moreover, owing to mgPFF's nature of per-pixel filter prediction, we have the unique opportunity to visualize how each pixel is evolving during solving these tasks, thus gaining better interpretability.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a novel problem of event recognition in unconstrained aerial videos in the remote sensing community and present the large-scale, human-annotated Event Recognition in Aerial Videos (ERA) data set, consisting of 2,864 videos, each with a label from 25 different classes corresponding to an event unfolding for five seconds.
Abstract: As a result of the increasing use of unmanned aerial vehicles (UAVs), large volumes of aerial videos have been produced. It is unrealistic for humans to screen such big data and understand the contents. Hence, methodological research on the automatic understanding of UAV videos is of paramount importance (Figure 1). In this article, we introduce a novel problem of event recognition in unconstrained aerial videos in the remote sensing community and present the large-scale, human-annotated Event Recognition in Aerial Videos (ERA) data set, consisting of 2,864 videos, each with a label from 25 different classes corresponding to an event unfolding for five seconds. All these videos are collected from YouTube. The ERA data set is designed to have significant intra-class variation and interclass similarity and captures dynamic events in various circumstances and at dramatically various scales. Moreover, to offer a benchmark for this task, we extensively validate existing deep networks. We expect that the ERA data set will facilitate further progress in automatic aerial video comprehension. The data set and trained models can be downloaded from https://lcmou.github.io/ERA_Dataset/.

18 citations

Posted Content
TL;DR: This paper proposes a Fast Network Adaptation (FNA++) method, which can adapt both the architecture and parameters of a seed network to become a network with different depths, widths, or kernel sizes via a parameter remapping technique, making it possible to use NAS for segmentation and detection tasks a lot more efficiently.
Abstract: Deep neural networks achieve remarkable performance in many computer vision tasks. Most state-of-the-art (SOTA) semantic segmentation and object detection approaches reuse neural network architectures designed for image classification as the backbone, commonly pre-trained on ImageNet. However, performance gains can be achieved by designing network architectures specifically for detection and segmentation, as shown by recent neural architecture search (NAS) research for detection and segmentation. One major challenge though is that ImageNet pre-training of the search space representation (a.k.a. super network) or the searched networks incurs huge computational cost. In this paper, we propose a Fast Network Adaptation (FNA++) method, which can adapt both the architecture and parameters of a seed network (e.g. an ImageNet pre-trained network) to become a network with different depths, widths, or kernel sizes via a parameter remapping technique, making it possible to use NAS for segmentation/detection tasks a lot more efficiently. In our experiments, we conduct FNA++ on MobileNetV2 to obtain new networks for semantic segmentation, object detection, and human pose estimation that clearly outperform existing networks designed both manually and by NAS. We also implement FNA++ on ResNets and NAS networks, which demonstrates a great generalization ability. The total computation cost of FNA++ is significantly less than SOTA segmentation/detection NAS approaches: 1737x less than DPC, 6.8x less than Auto-DeepLab, and 8.0x less than DetNAS. The code will be released at this https URL.

18 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...Early NAS works automate network architecture design by applying the reinforcement learning (RL) [14], [17], [32] or evolutionary algorithm (EA) [26], [33] to the search process....

    [...]

Journal ArticleDOI
01 Sep 2021
TL;DR: In this article, a review of the most promising approaches to extend CNN architectures to handle nontrivial geometric transformations is presented, as well as the application domains of the various approaches.
Abstract: One of the main challenges in machine vision relates to the problem of obtaining robust representation of visual features that remain unaffected by geometric transformations. This challenge arises naturally in many practical machine vision tasks. For example, in mobile robot applications like simultaneous localization and mapping (SLAM) and visual tracking, object shapes change depending on their orientation in the 3D world, camera proximity, viewpoint, or perspective. In addition, natural phenomena such as occlusion, deformation, and clutter can cause geometric appearance changes of the underlying objects, leading to geometric transformations of the resulting images. Recently, deep learning techniques have proven very successful in visual recognition tasks but they typically perform poorly with small data or when deployed in environments that deviate from training conditions. While convolutional neural networks (CNNs) have inherent representation power that provides a high degree of invariance to geometric image transformations, they are unable to satisfactorily handle nontrivial transformations. In view of this limitation, several techniques have been devised to extend CNNs to handle these situations. This article reviews some of the most promising approaches to extend CNN architectures to handle nontrivial geometric transformations. Key strengths and weaknesses, as well as the application domains of the various approaches are also highlighted. The review shows that although an adequate model for generalized geometric transformations has not yet been formulated, several techniques exist for solving specific problems. Using these methods, it is possible to develop task-oriented solutions to deal with nontrivial transformations.

18 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, the butterfly operations from the FFT algorithm to a general butterfly transform (BFT) can be used to reduce the computational complexity of channel fusions, which is the main bottleneck in the state-of-the-art efficient CNNs.
Abstract: In this paper, we show that extending the butterfly operations from the FFT algorithm to a general Butterfly Transform (BFT) can be beneficial in building an efficient block structure for CNN designs. Pointwise convolutions, which we refer to as channel fusions, are the main computational bottleneck in the state-of-the-art efficient CNNs (e.g. MobileNets). We introduce a set of criterion for channel fusion, and prove that BFT yields an asymptotically optimal FLOP count with respect to these criteria. By replacing pointwise convolutions with BFT, we reduce the computational complexity of these layers from O(n^2) to O(n log n) with respect to the number of channels. Our experimental evaluations show that our method results in significant accuracy gains across a wide range of network architectures, especially at low FLOP ranges. For example, BFT results in up to a 6.75% absolute Top-1 improvement for MobileNetV1, 4.4 % for ShuffleNet V2 and 5.4% for MobileNetV3 on ImageNet under a similar number of FLOPS. Notably, ShuffleNet-V2+BFT outperforms state-of-the-art architecture search methods MNasNet, FBNet and MobilenetV3 in the low FLOP regime.

18 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]