scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: This work proposes a neural architecture search (NAS) approach that integrates NAS and generative adversarial networks (GANs) with recent advances in perceptual SR and pushes the efficiency of small perceptual SR models to facilitate on-device execution.
Abstract: Recent works in single-image perceptual super-resolution (SR) have demonstrated unprecedented performance in generating realistic textures by means of deep convolutional networks. However, these convolutional models are excessively large and expensive, hindering their effective deployment to end devices. In this work, we propose a neural architecture search (NAS) approach that integrates NAS and generative adversarial networks (GANs) with recent advances in perceptual SR and pushes the efficiency of small perceptual SR models to facilitate on-device execution. Specifically, we search over the architectures of both the generator and the discriminator sequentially, highlighting the unique challenges and key observations of searching for an SR-optimized discriminator and comparing them with existing discriminator architectures in the literature. Our tiny perceptual SR (TPSR) models outperform SRGAN and EnhanceNet on both full-reference perceptual metric (LPIPS) and distortion metric (PSNR) while being up to 26.4$\times$ more memory efficient and 33.6$\times$ more compute efficient respectively.

18 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Recent SR works aim to build more efficient models using NAS, which has been vastly successful in a wide range of tasks such as image classification [57, 55, 38], language modeling [56], and automatic speech recognition [12]....

    [...]

  • ...In the proposed scheme, we extend the original REINFORCE-based NAS framework [56] in order to search for a GAN-based super-resolution model....

    [...]

Posted Content
TL;DR: This paper compares the performances of several popular machine learning algorithms previously applied with success to unbalanced data set with deep learning algorithms and evaluates various configuration including neural network optimization techniques and try to determine their capacities when they operate with imbalanced corpora.
Abstract: Training models on highly unbalanced data is admitted to be a challenging task for machine learning algorithms. Current studies on deep learning mainly focus on data sets with balanced class labels or unbalanced data, but with massive amount of samples available, like in speech recognition. However, the capacities of deep learning on imbalanced data with little samples is not deeply investigated in literature, while it is a very common application context in numerous industries. To contribute to fill this gap, this paper compares the performances of several popular machine learning algorithms previously applied with success to unbalanced data set with deep learning algorithms. We conduct those experiments on a highly unbalanced data set, used for credit scoring. We evaluate various configuration including neural network optimization techniques and try to determine their capacities when they operate with imbalanced corpora.

18 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Both Google’s AutoML and Auto-Keras are based on the Neural Architecture Search (NAS) technique [10][11]4....

    [...]

  • ...We observe that none of the proposed AutoML frameworks were tested in their respective descriptive papers on unbalanced data sets like ours ([10] is tested on an image recognition framework and experiment in [8] for Auto-Keras are based on MNIST, CIFAR and FASHION, 3 images recognition dataset)....

    [...]

Journal ArticleDOI
TL;DR: The proposed framework resolves the overfitting problem for lung cancer classification tasks, and it achieves better performance than other state-of-the-art methods.
Abstract: Cancer is the second leading cause of death worldwide, and the death rate of lung cancer is much higher than other types of cancers. In recent years, numerous novel computer-aided diagnostic techniques with deep learning have been designed to detect lung cancer in early stages. However, deep learning models are easy to overfit, and the overfitting problem always causes lower performance. To solve this problem of lung cancer classification tasks, we proposed a hybrid framework called LCGANT. Specifically, our framework contains two main parts. The first part is a lung cancer deep convolutional GAN (LCGAN) to generate synthetic lung cancer images. The second part is a regularization enhanced transfer learning model called VGG-DF to classify lung cancer images into three classes. Our framework achieves a result of 99.84% ± 0.156% (accuracy), 99.84% ± 0.153% (precision), 99.84% ± 0.156% (sensitivity), and 99.84% ± 0.156% (F1-score). The result reaches the highest performance of the dataset for the lung cancer classification task. The proposed framework resolves the overfitting problem for lung cancer classification tasks, and it achieves better performance than other state-of-the-art methods.

18 citations

Posted Content
TL;DR: The evolutionary exploration of augmenting convolutional topologies (EXACT) algorithm as mentioned in this paper was proposed to evolve the structure of CNNs in a large-scale distributed computing environment.
Abstract: This work presents a new algorithm called evolutionary exploration of augmenting convolutional topologies (EXACT), which is capable of evolving the structure of convolutional neural networks (CNNs). EXACT is in part modeled after the neuroevolution of augmenting topologies (NEAT) algorithm, with notable exceptions to allow it to scale to large scale distributed computing environments and evolve networks with convolutional filters. In addition to multithreaded and MPI versions, EXACT has been implemented as part of a BOINC volunteer computing project, allowing large scale evolution. During a period of two months, over 4,500 volunteered computers on the Citizen Science Grid trained over 120,000 CNNs and evolved networks reaching 98.32% test data accuracy on the MNIST handwritten digits dataset. These results are even stronger as the backpropagation strategy used to train the CNNs was fairly rudimentary (ReLU units, L2 regularization and Nesterov momentum) and these were initial test runs done without refinement of the backpropagation hyperparameters. Further, the EXACT evolutionary strategy is independent of the method used to train the CNNs, so they could be further improved by advanced techniques like elastic distortions, pretraining and dropout. The evolved networks are also quite interesting, showing "organic" structures and significant differences from standard human designed architectures.

18 citations

Proceedings Article
30 Jan 2022
TL;DR: This work investigates the design choices used in the previous studies in terms of the accuracy and number of spikes and points out that they are not best-suited for SNNs and proposes a spike-aware neural architecture search framework called AutoSNN, a search space consisting of architectures without undesirable design choices.
Abstract: —Spiking neural networks (SNNs) that mimic infor- mation transmission in the brain can energy-efficiently process spatio-temporal information through discrete and sparse spikes, thereby receiving considerable attention. To improve accuracy and energy efficiency of SNNs, most previous studies have focused solely on training methods, and the effect of architecture has rarely been studied. We investigate the design choices used in the previous studies in terms of the accuracy and number of spikes and figure out that they are not best-suited for SNNs. To further improve the accuracy and reduce the spikes generated by SNNs, we propose a spike-aware neural architecture search framework called AutoSNN. We define a search space consisting of architectures without undesirable design choices. To enable the spike-aware architecture search, we introduce a fitness that considers both the accuracy and number of spikes. AutoSNN suc- cessfully searches for SNN architectures that outperform hand-crafted SNNs in accuracy and energy efficiency. We thoroughly demonstrate the effectiveness of AutoSNN on various datasets including neuromorphic datasets.

18 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]