scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: A novel self-calibrated convolution that explicitly expand fields-of-view of each convolutional layers through internal communications and hence enrich the output features to help CNNs generate more discriminative representations by explicitly incorporating richer information.
Abstract: Recent advances on CNNs are mostly devoted to designing more complex architectures to enhance their representation learning capacity. In this paper, we consider how to improve the basic convolutional feature transformation process of CNNs without tuning the model architectures. To this end, we present a novel self-calibrated convolutions that explicitly expand fields-of-view of each convolutional layers through internal communications and hence enrich the output features. In particular, unlike the standard convolutions that fuse spatial and channel-wise information using small kernels (e.g., 3x3), self-calibrated convolutions adaptively build long-range spatial and inter-channel dependencies around each spatial location through a novel self-calibration operation. Thus, it can help CNNs generate more discriminative representations by explicitly incorporating richer information. Our self-calibrated convolution design is simple and generic, and can be easily applied to augment standard convolutional layers without introducing extra parameters and complexity. Extensive experiments demonstrate that when applying self-calibrated convolutions into different backbones, our networks can significantly improve the baseline models in a variety of vision tasks, including image recognition, object detection, instance segmentation, and keypoint detection, with no need to change the network architectures. We hope this work could provide a promising way for future research in designing novel convolutional feature transformations for improving convolutional networks. Code is available on the project page.

239 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...In the literature, an effective way to generate rich representations is using powerful hand-designed network architectures, such as residual networks (ResNets) [12] as well as their diverse variants [40, 43, 34, 7] or designing networks based on AutoML techniques [47, 26]....

    [...]

Book ChapterDOI
08 Sep 2018
TL;DR: This paper thoroughly benchmark 18 ImageNet models using multiple robustness metrics, including the distortion, success rate and transferability of adversarial examples between 306 pairs of models, and reveals several new insights.
Abstract: The prediction accuracy has been the long-lasting and sole standard for comparing the performance of different image classification models, including the ImageNet competition. However, recent studies have highlighted the lack of robustness in well-trained deep neural networks to adversarial examples. Visually imperceptible perturbations to natural images can easily be crafted and mislead the image classifiers towards misclassification. To demystify the trade-offs between robustness and accuracy, in this paper we thoroughly benchmark 18 ImageNet models using multiple robustness metrics, including the distortion, success rate and transferability of adversarial examples between 306 pairs of models. Our extensive experimental results reveal several new insights: (1) linear scaling law - the empirical \(\ell _2\) and \(\ell _\infty \) distortion metrics scale linearly with the logarithm of classification error; (2) model architecture is a more critical factor to robustness than model size, and the disclosed accuracy-robustness Pareto frontier can be used as an evaluation criterion for ImageNet model designers; (3) for a similar network architecture, increasing network depth slightly improves robustness in \(\ell _\infty \) distortion; (4) there exist models (in VGG family) that exhibit high adversarial transferability, while most adversarial examples crafted from one model can only be transferred within the same family. Experiment code is publicly available at https://github.com/huanzhang12/Adversarial_Survey.

234 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...– NASNets NASNets [23] are a family of networks automatically generated by reinforcement learning using a policy gradient algorithm to optimize architectures [28]....

    [...]

Book ChapterDOI
Michelle Guo1, Albert Haque1, De-An Huang1, Serena Yeung1, Li Fei-Fei1 
08 Sep 2018
TL;DR: This work proposes a notion of dynamic task prioritization to automatically prioritize more difficult tasks by adaptively adjusting the mixing weight of each task’s loss objective and outperforms existing multitask methods and demonstrates competitive results with modern single-task models on the COCO and MPII datasets.
Abstract: We propose dynamic task prioritization for multitask learning. This allows a model to dynamically prioritize difficult tasks during training, where difficulty is inversely proportional to performance, and where difficulty changes over time. In contrast to curriculum learning, where easy tasks are prioritized above difficult tasks, we present several studies showing the importance of prioritizing difficult tasks first. We observe that imbalances in task difficulty can lead to unnecessary emphasis on easier tasks, thus neglecting and slowing progress on difficult tasks. Motivated by this finding, we introduce a notion of dynamic task prioritization to automatically prioritize more difficult tasks by adaptively adjusting the mixing weight of each task’s loss objective. Additional ablation studies show the impact of the task hierarchy, or the task ordering, when explicitly encoded in the network architecture. Our method outperforms existing multitask methods and demonstrates competitive results with modern single-task models on the COCO and MPII datasets.

233 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Neural architecture search [51] takes this a step further and trains an agent with the goal of designing entire network architectures, using accuracy as the progress (reward) signal....

    [...]

Posted Content
TL;DR: In this paper, the authors proposed a single path one-shot neural architecture search (NAS) model, where all architectures are single paths so that weight co-adaption problem is alleviated.
Abstract: We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.

214 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: DetectoRS as mentioned in this paper proposes recursive feature pyramid, which incorporates extra feedback connections from Feature Pyramid Networks into the bottom-up backbone layers, and switchable atrous convolution which convolves the features with different atrous rates and gathers the results using switch functions.
Abstract: Many modern object detectors demonstrate outstanding performances by using the mechanism of looking and thinking twice. In this paper, we explore this mechanism in the backbone design for object detection. At the macro level, we propose Recursive Feature Pyramid, which incorporates extra feedback connections from Feature Pyramid Networks into the bottom-up backbone layers. At the micro level, we propose Switchable Atrous Convolution, which convolves the features with different atrous rates and gathers the results using switch functions. Combining them results in DetectoRS, which significantly improves the performances of object detection. On COCO test-dev, DetectoRS achieves state-of-the-art 55.7% box AP for object detection, 48.5% mask AP for instance segmentation, and 50.0% PQ for panoptic segmentation. The code is made publicly available1.

213 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]