scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
09 Mar 2022
TL;DR: This paper designs two new types of cross-category level vision regression tasks, namely object discovery and pose estimation of unprecedented complexity in the meta-learning domain for computer vision and proposes the addition of functional contrastive learning (FCL) over the task representations in Conditional Neural Processes (CNPs).
Abstract: Meta-learning is widely used in few-shot classification and function regression due to its ability to quickly adapt to unseen tasks. However, it has not yet been well explored on regression tasks with high dimensional inputs such as images. This paper makes two main contributions that help understand this barely explored area. First, we design two new types of cross-category level vision regression tasks, namely object discovery and pose estimation of unprecedented complexity in the meta-learning domain for computer vision. To this end, we (i) exhaustively evaluate common meta-learning techniques on these tasks, and (ii) quantitatively analyze the effect of various deep learning techniques commonly used in recent meta-learning algorithms in order to strengthen the generalization capability: data augmentation, domain randomization, task augmentation and meta-regularization. Finally, we (iii) provide some insights and practical recommendations for training meta-learning algorithms on vision regression tasks. Second, we propose the addition of functional contrastive learning (FCL) over the task representations in Conditional Neural Processes (CNPs) and train in an end-to-end fashion. The experimental results show that the results of prior work are misleading as a consequence of a poor choice of the loss function as well as too small meta-training sets. Specifically, we find that CNPs outperform MAML on most tasks without fine-tuning. Furthermore, we observe that naive task augmentation without a tailored design results in underfitting.

11 citations

Proceedings ArticleDOI
05 Oct 2022
TL;DR: DreamShard is presented, a reinforcement learning (RL) approach for embedding table placement that substantially outperforms the existing human expert and RNN-based strategies with up to 19% speedup over the strongest baseline on large-scale synthetic tables and the authors' production tables.
Abstract: We study embedding table placement for distributed recommender systems, which aims to partition and place the tables on multiple hardware devices (e.g., GPUs) to balance the computation and communication costs. Although prior work has explored learning-based approaches for the device placement of computational graphs, embedding table placement remains to be a challenging problem because of 1) the operation fusion of embedding tables, and 2) the generalizability requirement on unseen placement tasks with different numbers of tables and/or devices. To this end, we present DreamShard, a reinforcement learning (RL) approach for embedding table placement. DreamShard achieves the reasoning of operation fusion and generalizability with 1) a cost network to directly predict the costs of the fused operation, and 2) a policy network that is efficiently trained on an estimated Markov decision process (MDP) without real GPU execution, where the states and the rewards are estimated with the cost network. Equipped with sum and max representation reductions, the two networks can directly generalize to any unseen tasks with different numbers of tables and/or devices without fine-tuning. Extensive experiments show that DreamShard substantially outperforms the existing human expert and RNN-based strategies with up to 19% speedup over the strongest baseline on large-scale synthetic tables and our production tables. The code is available at https://github.com/daochenzha/dreamshard

11 citations

Journal ArticleDOI
TL;DR: An evolutionary-based NAS method is employed to evolve graph convolutional networks for the problem of predicting the relative performance of various architectures included in the NAS-Bench-101 dataset, achieving a Kendall’s tau correlation coefficient of 0.907.
Abstract: As neural architecture search (NAS) becomes an increasingly adopted method to design network architectures, various methods have been proposed to speedup the process. Besides proxy evaluation tasks, weight sharing, and scaling down the evaluated architectures, performance-predicting models exhibit multiple advantages. Eliminating the need to train candidate architectures and enabling transfer learning between datasets, researchers can also utilize them as a surrogate function for Bayesian optimization. On the other hand, graph convolutional networks (GCNs) have also been increasingly adopted for various tasks, enabling deep learning techniques on graphs without feature engineering. In this paper, we employ an evolutionary-based NAS method to evolve GCNs for the problem of predicting the relative performance of various architectures included in the NAS-Bench-101 dataset. By fine-tuning the architecture generated by our methodology, we manage to achieve a Kendall’s tau correlation coefficient of 0.907 between 1050 completely unseen architectures, utilizing only 450 samples, while also outperforming a strong baseline on the same task. Furthermore, we validate our method on custom global search space architectures, generated for the Fashion-MNIST dataset.

11 citations

Journal ArticleDOI
TL;DR: A novel convolution network is applied in the backbone of Faster R-CNN, namely deformable Convolution network (DCN), which improves the detection of lesions with varying shapes and sizes and a multiscale feature pyramid network is used, called the neural architecture search-feature pyramid network (NAS-FPN), to integrate the best features into the model.
Abstract: Designing computer-assisted diagnosis (CAD) systems that can precisely identify lesions from mammography images would be useful for clinicians. Considering the morphological variation in breast cancer, it is necessary to extract robust features from the mammogram. Here, we propose a mass detection CAD system that is based on Faster R-CNN. First, we applied a novel convolution network in the backbone of Faster R-CNN, namely deformable convolution network (DCN), which improves the detection of lesions with varying shapes and sizes. Second, the original Faster R-CNN uses the output of the last layer of the backbone as a single-scale feature map. To facilitate the detection of small lesions, we used a multiscale feature pyramid network of multiple cross-scale connections between the different output layers of the backbone, called the neural architecture search-feature pyramid network (NAS-FPN). Thus, we were able to integrate the best features into the model. We then evaluated our method by using the datasets the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, respectively. Our method yielded a true positive rate of 0.9345 at 2.2805 false positive per image on CBIS-DDSM and a true positive rate of 0.9554 at 0.3829 false positive per image on INbreast. Graphical abstract.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed EMONAS-Net, an Efficient MultiObjective Neural Architecture Search (NAS) framework for 3D medical image segmentation that optimizes both the segmentation accuracy and the network size.

11 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]