scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
Mi Sun Park1, Xiaofan Xu1, Cormac Brick1
TL;DR: SQuantizer is a new training method that jointly optimizes for both sparse and low-precision neural networks while maintaining high accuracy and providing a high compression rate, and allows for fast single pass training.
Abstract: Deep neural networks have achieved state-of-the-art accuracies in a wide range of computer vision, speech recognition, and machine translation tasks. However the limits of memory bandwidth and computational power constrain the range of devices capable of deploying these modern networks. To address this problem, we propose SQuantizer, a new training method that jointly optimizes for both sparse and low-precision neural networks while maintaining high accuracy and providing a high compression rate. This approach brings sparsification and low-bit quantization into a single training pass, employing these techniques in an order demonstrated to be optimal. Our method achieves state-of-the-art accuracies using 4-bit and 2-bit precision for ResNet18, MobileNet-v2 and ResNet50, even with high degree of sparsity. The compression rates of 18x for ResNet18 and 17x for ResNet50, and 9x for MobileNet-v2 are obtained when SQuantizing both weights and activations within 1% and 2% loss in accuracy for ResNets and MobileNet-v2 respectively. An extension of these techniques to object detection also demonstrates high accuracy on YOLO-v3. Additionally, our method allows for fast single pass training, which is important for rapid prototyping and neural architecture search techniques. Finally extensive results from this simultaneous training approach allows us to draw some useful insights into the relative merits of sparsity and quantization.

9 citations


Additional excerpts

  • ...It includes network pruning [9, 7, 30], network quantization [20, 39, 3], low-rank approximation [29, 33], efficient architecture design [27, 34], neural architecture search [40, 6] and hardware accelerators [8, 23]....

    [...]

Proceedings ArticleDOI
01 Jan 2022
TL;DR: This work presents a new approach to optimizing the filter selection in channel pruning with lookahead search guided reinforcement learning (RL), which employs Monte Carlo tree search (MCTS) to provide a look Ahead search for filter selection, which increases the sample efficiency for the RL training.
Abstract: Channel pruning has become an effective yet still challenging approach to achieve compact neural networks. It aims to prune the optimal set of filters whose removal results in minimal performance degradation of the slimmed network. Due to the prohibitively vast search space of filter combinations, existing approaches usually use various criteria to estimate the filter importance while sacrificing some precision. Here we present a new approach to optimizing the filter selection in channel pruning with lookahead search guided reinforcement learning (RL). A neural network that takes as input filterrelated features is trained with RL to prune the optimal sequence of filters and maximize the performance of the remaining network. In addition, we employ Monte Carlo tree search (MCTS) to provide a lookahead search for filter selection, which increases the sample efficiency for the RL training. Experiments on MNIST, CIFAR-10, and ILSVRC-2012 validate the effectiveness of our approach compared to both traditional and automated existing channel pruning approaches.

9 citations

Proceedings ArticleDOI
19 Jul 2020
TL;DR: The challenge is introduced, followed by a proposal of a general AutoDS framework that covers existing approaches but also provides guidance for the development of new methods and several views on how AI could succeed in automating end-to-end AutoDS are provided.
Abstract: Data science is labor-intensive and human experts are scarce but heavily involved in every aspect of it. This makes data science time consuming and restricted to experts with the resulting quality heavily dependent on their experience and skills. To make data science more accessible and scalable, we need its democratization. Automated Data Science (AutoDS) is aimed towards that goal and is emerging as an important research and business topic. We introduce and define the AutoDS challenge, followed by a proposal of a general AutoDS framework that covers existing approaches but also provides guidance for the development of new methods. We categorize and review the existing literature from multiple aspects of the problem setup and employed techniques. Then we provide several views on how AI could succeed in automating end-to-end AutoDS. We hope this survey can serve as insightful guideline for the AutoDS field and provide inspiration for future research.

9 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...context, an interesting reinforcement learning system is proposed in [31], which creates an optimal convolutional neural network architecture for image classification....

    [...]

  • ...[30] and [31] were one of the first works to explore RL-based approaches for architecture search....

    [...]

Posted Content
TL;DR: Differentiable Markov Channel Pruning (DMCP) as mentioned in this paper is a differentiable channel pruning method that can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g., FLOPs constraint).
Abstract: Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks. However, existing works based on this observation require training and evaluating a large number of structures, which limits their application. In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure. Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint). In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process. In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2. Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings. The code is available at this https URL

9 citations

Proceedings ArticleDOI
10 Apr 2022
TL;DR: This work designs deep neural networks and corresponding networks' splittings to distribute DNNs' workload to camera sensors and a centralized aggregator on head mounted devices to meet system performance targets in inference accuracy and latency under the given hardware resource constraints.
Abstract: We design deep neural networks (DNNs) and corresponding networks' splittings to distribute DNNs' workload to camera sensors and a centralized aggregator on head mounted devices to meet system performance targets in inference accuracy and latency under the given hardware resource constraints. To achieve an optimal balance among computation, communication, and performance, a split-aware neural architecture search framework, SplitNets, is introduced to conduct model designing, splitting, and communication reduction simultaneously. We further extend the framework to multi-view systems for learning to fuse inputs from multiple camera sensors with optimal performance and systemic efficiency. We validate SplitNets for single-view system on ImageNet as well as multi-view system on 3D classification, and show that the SplitNets framework achieves state-of-the-art (SOTA) performance and system latency compared with existing approaches.

9 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]