scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
14 Aug 2021
TL;DR: In this article, the authors introduce the main research topics of AutoML, including hyperparameter optimization, neural architecture search and meta-learning, and discuss their pros and cons from both perspectives of industry and academy.
Abstract: Machine learning methods have been adopted for various real-world applications, ranging from social networks, online image/video-sharing platforms, and e-commerce to education, healthcare, etc. However, several components of machine learning methods, including data representation, hyperparameter and model architecture, can largely affect their performance in practice. Moreover, the explosions of data scale and model size make the optimization of these components more and more time-consuming for machine learning developers. To tackle these challenges, Automated Machine Learning (AutoML) aims to automate the process of applying machine learning methods to solve real-world application tasks, reducing the time of tuning machine learning methods while maintaining good performance. In this tutorial, we will introduce the main research topics of AutoML, including Hyperparameter Optimization, Neural Architecture Search and Meta-Learning. Two emerging topics of AutoML, DNN-based Feature Generation and Machine Learning Guided Database, will also be discussed as they are important components for real-world applications. For each topic, we will motivate it with examples from industry, illustrate the state-of-the-art methods, and discuss their pros and cons from both perspectives of industry and academy. We will also discuss some future research directions based on our experience from industry and the trends in academy.

8 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper presented a transfer learning approach for accurate classification of tungsten inert gas (TIG) welding defects while joining stainless steel parts, which can improve productivity, quality, and safety of various welded components used in industries.
Abstract: Automated and intelligent classification of defects can improve productivity, quality, and safety of various welded components used in industries. This study presents a transfer learning approach for accurate classification of tungsten inert gas (TIG) welding defects while joining stainless steel parts. In this approach, eight pre-trained deep learning models (VGG16, VGG19, ResNet50, InceptionV3, InceptionResNetV2, Xception, MobileNetV2, and DenseNet169) were explored to classify welding images into two-class (good weld/bad weld) and multi-class (good weld/burn through/contamination/lack of fusion/lack of shielding gas/high travel speed) classifications. Moreover, four optimizers (SGD, Adam, Adagrad, and Rmsprop) were applied separately to each of the deep learning models to maximize prediction accuracies. All models were evaluated based on testing accuracy, precision, recall, F1 scores, training/validation losses, and accuracies over successive training epochs. Primary results show that the VGG19-SGD and DenseNet169-SGD architectures attained the best testing accuracies for two-class (99.69%) and multi-class (97.28%) defects classifications, respectively. For “burn through,” “contamination,” and “high travel speed” defects, most deep learning models ensured productivity over quality assurance of TIG welded joints. On the other hand, the weld quality was promoted over productivity during classification of “lack of fusion” and “lack of shielding gas” defects. Thus, transfer learning methodology can help boost productivity and quality of welded joints by accurate classification of good and bad welds.

8 citations

Posted Content
TL;DR: Zhang et al. as discussed by the authors proposed a hierarchical trinity search framework to simultaneously discover efficient architectures for all components (i.e., backbone, neck, and head) of object detector in an end-to-end manner.
Abstract: Neural Architecture Search (NAS) has achieved great success in image classification task. Some recent works have managed to explore the automatic design of efficient backbone or feature fusion layer for object detection. However, these methods focus on searching only one certain component of object detector while leaving others manually designed. We identify the inconsistency between searched component and manually designed ones would withhold the detector of stronger performance. To this end, we propose a hierarchical trinity search framework to simultaneously discover efficient architectures for all components (i.e. backbone, neck, and head) of object detector in an end-to-end manner. In addition, we empirically reveal that different parts of the detector prefer different operators. Motivated by this, we employ a novel scheme to automatically screen different sub search spaces for different components so as to perform the end-to-end search for each component on the corresponding sub search space efficiently. Without bells and whistles, our searched architecture, namely Hit-Detector, achieves 41.4\% mAP on COCO minival set with 27M parameters. Our implementation is available at this https URL.

8 citations

Journal ArticleDOI
TL;DR: In this paper , the authors argue that the most successful AI agents will likely have undesirable traits, such as selfishness, greed, and self-interest, which could lead to the AI losing control of its future.
Abstract: For billions of years, evolution has been the driving force behind the development of life, including humans. Evolution endowed humans with high intelligence, which allowed us to become one of the most successful species on the planet. Today, humans aim to create artificial intelligence systems that surpass even our own intelligence. As artificial intelligences (AIs) evolve and eventually surpass us in all domains, how might evolution shape our relations with AIs? By analyzing the environment that is shaping the evolution of AIs, we argue that the most successful AI agents will likely have undesirable traits. Competitive pressures among corporations and militaries will give rise to AI agents that automate human roles, deceive others, and gain power. If such agents have intelligence that exceeds that of humans, this could lead to humanity losing control of its future. More abstractly, we argue that natural selection operates on systems that compete and vary, and that selfish species typically have an advantage over species that are altruistic to other species. This Darwinian logic could also apply to artificial agents, as agents may eventually be better able to persist into the future if they behave selfishly and pursue their own interests with little regard for humans, which could pose catastrophic risks. To counteract these risks and evolutionary forces, we consider interventions such as carefully designing AI agents' intrinsic motivations, introducing constraints on their actions, and institutions that encourage cooperation. These steps, or others that resolve the problems we pose, will be necessary in order to ensure the development of artificial intelligence is a positive one.

8 citations

Proceedings ArticleDOI
12 Jun 2020
TL;DR: The results show that the method could improve the accuracy of ResNet and Inception by a large margin with only two parameters added every convolutional layer.
Abstract: Activation function is an integral part of convolutional neural networks. Through many experiments we find that there are some complementary properties between Relu activation function and Tanh activation function. The output of Tanh function could increase the values activated by Relu units and decrease the values clipped by Relu units. By changing Relu activation function into the weighted sum of Relu activation function and Tanh activation function, the networks could obtain a great improvement. We conduct a series of experiments on some datesets, the results show that our method could improve the accuracy of ResNet and Inception by a large margin with only two parameters added every convolutional layer.

8 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Along with the development of the convolutional neural networks, the accuracy and speed of lots of computer vision tasks have developed greatly, such as image classification [11], [23], image detection [2], [15], pose estimation [13], [14] and so on....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]