scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: This paper proposed a self-attention model with block-term tensor decomposition (BTD) to compress the model parameters and obtain performance improvements. But the multi-linear attention mechanism, as a key component of Transformer, limits the effective deployment of the model to a resource-limited setting.
Abstract: Latest development of neural models has connected the encoder and decoder through a self-attention mechanism. In particular, Transformer, which is solely based on self-attention, has led to breakthroughs in Natural Language Processing (NLP) tasks. However, the multi-head attention mechanism, as a key component of Transformer, limits the effective deployment of the model to a resource-limited setting. In this paper, based on the ideas of tensor decomposition and parameters sharing, we propose a novel self-attention model (namely Multi-linear attention) with Block-Term Tensor Decomposition (BTD). We test and verify the proposed attention method on three language modeling tasks (i.e., PTB, WikiText-103 and One-billion) and a neural machine translation task (i.e., WMT-2016 English-German). Multi-linear attention can not only largely compress the model parameters but also obtain performance improvements, compared with a number of language modeling approaches, such as Transformer, Transformer-XL, and Transformer with tensor train decomposition.

6 citations

Journal ArticleDOI
TL;DR: This work proposes and demonstrates a methodology that integrates the ML design and the experimental evaluation iterations into the continual expansion of an arbitrary pre-existing ML model, enabling the creation of dynamic multitask systems at a scale that would not be feasible to achieve with the constraint of running parallel repetitions from a neutral start state.
Abstract: The traditional Machine Learning (ML) methodology requires to fragment the development and experimental process into disconnected iterations whose feedback is used to guide design or tuning choices. This methodology has multiple efficiency and scalability disadvantages, such as leading to spend significant resources into the creation of multiple trial models that do not contribute to the final solution. The presented work is based on the intuition that defining ML models as modular and extensible artefacts allows to introduce a novel ML development methodology enabling the integration of multiple design and evaluation iterations into the continuous enrichment of a single unbounded intelligent system. We define a novel method for the generation of dynamic multitask ML models as a sequence of extensions and generalizations. We first analyze the capabilities of the proposed method by using the standard ML empirical evaluation methodology. Finally, we propose a novel continuous development methodology that allows to dynamically extend a pre-existing multitask large-scale ML system while analyzing the properties of the proposed method extensions. This results in the generation of an ML model capable of jointly solving 124 image classification tasks achieving state of the art quality with improved size and compute cost. the final ML solution. Furthermore, it relies on significant human intervention rather than aiming to automate any of the design or tuning exploration. We propose and demonstrate a methodology that integrates the ML design and the experimental evaluation iterations into the continual expansion of an arbitrary pre-existing ML model. The proposed ML methodology allows any design variation and model knowledge enrichment to be evaluated as an extension of the latest state of the dynamic ML system. Successful extensions can be integrated as base for future experimentation and further extensions. This methodology enables the creation of dynamic multitask systems at a scale that would not be feasible to achieve with the constraint of running parallel repetitions from a neutral start state.

6 citations

Posted Content
TL;DR: This study proposed a fully differentiable sparsification method for deep neural networks, which allows parameters to be exactly zero during training and can simultaneously learn the sparsified structure and weights of networks using the stochastic gradient descent.
Abstract: Deep neural networks have relieved a great deal of burden on human experts in relation to feature engineering. However, comparable efforts are instead required to determine effective architectures. In addition, as the sizes of networks have grown overly large, a considerable amount of resources is also invested in reducing the sizes. The sparsification of an over-complete model addresses these problems as it removes redundant components and connections. In this study, we propose a fully differentiable sparsification method for deep neural networks which allows parameters to be zero during training via stochastic gradient descent. Thus, the proposed method can learn the sparsified structure and weights of a network in an end-to-end manner. The method is directly applicable to various modern deep neural networks and imposes minimum modification to existing models. To the best of our knowledge, this is the first fully [sub-]differentiable sparsification method that zeroes out parameters. It provides a foundation for future structure learning and model compression methods.

6 citations

Proceedings ArticleDOI
19 Apr 2021
TL;DR: In this paper, the authors express neural architecture operations as program transformations whose legality depends on a notion of representational capacity, and combine them with existing transformations into a unified optimization framework.
Abstract: Improving the performance of deep neural networks (DNNs) is important to both the compiler and neural architecture search (NAS) communities. Compilers apply program transformations in order to exploit hardware parallelism and memory hierarchy. However, legality concerns mean they fail to exploit the natural robustness of neural networks. In contrast, NAS techniques mutate networks by operations such as the grouping or bottlenecking of convolutions, exploiting the resilience of DNNs. In this work, we express such neural architecture operations as program transformations whose legality depends on a notion of representational capacity. This allows them to be combined with existing transformations into a unified optimization framework. This unification allows us to express existing NAS operations as combinations of simpler transformations. Crucially, it allows us to generate and explore new tensor convolutions. We prototyped the combined framework in TVM and were able to find optimizations across different DNNs, that significantly reduce inference time - over 3× in the majority of cases. Furthermore, our scheme dramatically reduces NAS search time.

6 citations

Proceedings ArticleDOI
13 Oct 2022
TL;DR: This work studiesed-length and variable-length subsampling along the time axis in self-supervised learning and explores how individual downstream tasks are sensitive to input frame rates.
Abstract: Compressing self-supervised models has become increasingly necessary, as self-supervised models become larger. While previous approaches have primarily focused on compressing the model size, shortening sequences is also effective in reducing the computational cost. In this work, we study fixed-length and variable-length subsampling along the time axis in self-supervised learning. We explore how individual downstream tasks are sensitive to input frame rates. Subsampling while training self-supervised models not only improves the overall performance on downstream tasks under certain frame rates, but also brings significant speed-up in inference. Variable-length subsampling performs particularly well under low frame rates. In addition, if we have access to phonetic boundaries, we find no degradation in performance for an average frame rate as low as 10 Hz.

6 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]