scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a convolutional neural network was used to detect morphology features with a CNN and then combined with global g- and i-band luminosities features in a gradient boosting machine.
Abstract: One of the most important properties of a galaxy is the total stellar mass, or equivalently the stellar mass-to-light ratio (M/L). It is not directly observable, but can be estimated from stellar population synthesis. Currently, a galaxy's M/L is typically estimated from global fluxes. For example, a single global g - i colour correlates well with the stellar M/L. Spectral energy distribution (SED) fitting can make use of all available fluxes and their errors to make a Bayesian estimate of the M/L. We want to investigate the possibility of using morphology information to assist predictions of M/L. Our first goal is to develop and train a method that only requires a g-band image and redshift as input. This will allows us to study the correlation between M/L and morphology. Next, we can also include the i-band flux, and determine if morphology provides additional constraints compared to a method that only uses g- and i-band fluxes. We used a machine learning pipeline that can be split in two steps. First, we detected morphology features with a convolutional neural network. These are then combined with redshift, pixel size and g-band luminosity features in a gradient boosting machine. Our training target was the M/L acquired from the GALEX-SDSS-WISE Legacy Catalog, which uses global SED fitting and contains galaxies with z ~ 0.1. Morphology is a useful attribute when no colour information is available, but can not outperform colour methods on its own. When we combine the morphology features with global g- and i-band luminosities, we find an improved estimate compared to a model which does not make use of morphology. While our method was trained to reproduce global SED fitted M/L, galaxy morphology gives us an important additional constraint when using one or two bands. Our framework can be extended to other problems to make use of morphological information.

5 citations

Posted Content
TL;DR: A Multi-task based lifelong learning via nonexpansive AutoML framework termed Regularize, Expand and Compress (REC), inspired by the recent breakthroughs in automatically learning good neural network architectures that achieve superior performance over other lifelong learning algorithms on four different datasets.
Abstract: Lifelong learning, the problem of continual learning where tasks arrive in sequence, has been lately attracting more attention in the computer vision community. The aim of lifelong learning is to develop a system that can learn new tasks while maintaining the performance on the previously learned tasks. However, there are two obstacles for lifelong learning of deep neural networks: catastrophic forgetting and capacity limitation. To solve the above issues, inspired by the recent breakthroughs in automatically learning good neural network architectures, we develop a Multi-task based lifelong learning via nonexpansive AutoML framework termed Regularize, Expand and Compress (REC). REC is composed of three stages: 1) continually learns the sequential tasks without the learned tasks' data via a newly proposed multi-task weight consolidation (MWC) algorithm; 2) expands the network to help the lifelong learning with potentially improved model capability and performance by network-transformation based AutoML; 3) compresses the expanded model after learning every new task to maintain model efficiency and performance. The proposed MWC and REC algorithms achieve superior performance over other lifelong learning algorithms on four different datasets.

5 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...ENAS [21] uses a controller to discover network architectures by searching an optimal subgraph within a large computational graph and shares parameters among child models to enable efficient NAS....

    [...]

  • ...Neural Architecture Search (NAS) [32] searches the transferable network blocks via reinforcement learning and outperforms many manually designed network architecture....

    [...]

  • ...AutoML refers to automatically learn a suitable machine learning (ML) model for a given task — Neural Architecture Search (NAS) [32] is a subfield of AutoML for deep learning, which searches for optimal hyperparameters of designing a network architecture using reinforcement learning (RL)....

    [...]

  • ...There are many works on AutoML to improve the performance of deep neural networks [32, 21, 3]....

    [...]

Posted Content
TL;DR: A comprehensive analysis on five search spaces, including NAS- Bench-101, NAS-Bench-201, DARTS-CIFAR10, DARts-PTB, and ProxylessNAS, finds a well-trained supernet is not necessarily a good architecture-ranking model and it is easier to find better architectures from an effectively pruned search space with supernet training.
Abstract: Weight sharing, as an approach to speed up architecture performance estimation has received wide attention. Instead of training each architecture separately, weight sharing builds a supernet that assembles all the architectures as its submodels. However, there has been debate over whether the NAS process actually benefits from weight sharing, due to the gap between supernet optimization and the objective of NAS. To further understand the effect of weight sharing on NAS, we conduct a comprehensive analysis on five search spaces, including NAS-Bench-101, NAS-Bench-201, DARTS-CIFAR10, DARTS-PTB, and ProxylessNAS. We find that weight sharing works well on some search spaces but fails on others. Taking a step forward, we further identified biases accounting for such phenomenon and the capacity of weight sharing. Our work is expected to inspire future NAS researchers to better leverage the power of weight sharing.

5 citations

DOI
TL;DR: In this paper, a light weight multisensory fusion model for induction motor data fusion and diagnosis is proposed to accelerate the training speed and prediction speed of the diagnostic model, so that the diagnostic accuracy is maintained at an acceptable level.
Abstract: Fault diagnosis keeps an essential tool to ensure the safety and reliability of a motor system. Based on deep learning, fault diagnosis models constructed by mining historical fault data of equipment have received extensive attention. However, the high computational cost constrains the application of deep learning models for fault diagnosis, especially when coping with multisource data. Inspired by the model reduction and neural network structure automatic search method, this article proposed a light weight multisensory fusion model for induction motor data fusion and diagnosis. Inverted residual block and network architecture search technology are introduced to accelerate the training speed and prediction speed of the diagnostic model, so that the diagnostic accuracy is maintained at an acceptable level. The effectiveness of the proposed model is demonstrated through motor fault diagnosis experiments. Compared with other popular neural networks, the proposed method is capable of judging fault patterns accurately with shorter prediction time.

5 citations

Book ChapterDOI
23 Aug 2020
TL;DR: This paper achieves this by training a Convolutional Neural Network model on a source-domain of diverse histological tissue labels for classification and then transfer them to different target domains for diagnosis without re-training/fine-tuning (zero-shot).
Abstract: Deep learning tools in computational pathology, unlike natural vision tasks, face with limited histological tissue labels for classification. This is due to expensive procedure of annotation done by expert pathologist. As a result, the current models are limited to particular diagnostic task in mind where the training workflow is repeated for different organ sites and diseases. In this paper, we explore the possibility of transferring diagnostically-relevant histology labels from a source-domain into multiple target-domains to classify similar tissue structures and cancer grades. We achieve this by training a Convolutional Neural Network (CNN) model on a source-domain of diverse histological tissue labels for classification and then transfer them to different target domains for diagnosis without re-training/fine-tuning (zero-shot). We expedite this by an efficient color augmentation to account for color disparity across different tissue scans and conduct thorough experiments for evaluation.

5 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...The kernel size and channel depth are optimized using the NASReinforcement Learning method in [48]; and (b) Classification performance (AUC) of HistoNet on selected HTTs at different scan resolutions....

    [...]

  • ...Furthermore, we develop a simple and yet efficient Convolutional Neural Network (CNN) architecture called “HistoNet”, guided by the Reinforcement Learning (RL)-based Neural Architecture Search (NAS) [48] as a means to the end goal of domain adaptation....

    [...]

  • ...First, we seek the optimal configuration for {w`}6`=1 and {D`} 6 i=1 using the neural architecture search with reinforcement learning algorithm introduced in [48]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]