scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: This paper demonstrates how to perform reinforcement learning in R and introduces the ReinforcementLearning package, which provides a remarkably flexible framework and is easily applied to a wide range of different problems.
Abstract: Reinforcement learning refers to a group of methods from artificial intelligence where an agent performs learning through trial and error. It differs from supervised learning, since reinforcement learning requires no explicit labels; instead, the agent interacts continuously with its environment. That is, the agent starts in a specific state and then performs an action, based on which it transitions to a new state and, depending on the outcome, receives a reward. Different strategies (e.g. Q-learning) have been proposed to maximize the overall reward, resulting in a so-called policy, which defines the best possible action in each state. Mathematically, this process can be formalized by a Markov decision process and it has been implemented by packages in R; however, there is currently no package available for reinforcement learning. As a remedy, this paper demonstrates how to perform reinforcement learning in R and, for this purpose, introduces the ReinforcementLearning package. The package provides a remarkably flexible framework and is easily applied to a wide range of different problems. We demonstrate its use by drawing upon common examples from the literature (e.g. finding optimal game strategies).

5 citations


Cites background from "Neural Architecture Search with Rei..."

  • ..., 2006) or tuning hyperparameters in machine learning algorithms (Zoph and Le, 2016)....

    [...]

  • ...Beyond that, it also helps in optimizing financial trading (Nevmyvaka et al., 2006) or tuning hyperparameters in machine learning algorithms (Zoph and Le, 2016)....

    [...]

Journal ArticleDOI
TL;DR: In this paper , a GP-NASensemble is proposed to predict the performance of a neural network architecture with a small training dataset, which ranks second in the CVPR2022 second lightweight NAS challenge performance prediction track.
Abstract: It is of great significance to estimate the performance of a given model architecture without training in the application of Neural Architecture Search (NAS) as it may take a lot of time to evaluate the performance of an architecture. In this paper, a novel NAS framework called GP-NASensemble is proposed to predict the performance of a neural network architecture with a small training dataset. We make several improvements on the GP-NAS model to make it share the advantage of ensemble learning methods. Our method ranks second in the CVPR2022 second lightweight NAS challenge performance prediction track.

5 citations

Book ChapterDOI
19 Oct 2020
TL;DR: This work proposes two strategies to narrow the search/evaluation gap in differentiable architecture search: firstly, rectify the operation with the highest confidence; secondly, prune theoperation with the lowest confidence iteratively.
Abstract: Architecture design is a crucial step for neural-network-based methods, and it requires years of experience and extensive work. Encouragingly, with recently proposed neural architecture search (NAS), the architecture design process could be automated. In particular, differentiable architecture search (DARTS) reduces the time cost of search to a couple of GPU days. However, due to the inconsistency between the architecture search and evaluation of DARTS, its performance has yet to be improved. We propose two strategies to narrow the search/evaluation gap: firstly, rectify the operation with the highest confidence; secondly, prune the operation with the lowest confidence iteratively. Experiments show that our method achieves 2.46%/2.48% (test error, Strategy 1 or 2) on CIFAR-10 and 16.48%/16.15% (test error, Strategy 1 or 2) on CIFAR-100 at a low cost of 11 or 8 (Strategy 1 or 2) GPU hours, and outperforms state-of-the-art algorithms.

5 citations

Posted Content
TL;DR: MemNet is proposed, an augment-trim learning-based neural network search framework that optimizes not only performance but also memory requirement and employs memory consumption based ranking score which forces an upper bound on memory consumption for navigating the search process.
Abstract: Recent studies on automatic neural architectures search have demonstrated significant performance, competitive to or even better than hand-crafted neural architectures. However, most of the existing network architecture tend to use residual, parallel structures and concatenation block between shallow and deep features to construct a large network. This requires large amounts of memory for storing both weights and feature maps. This is challenging for mobile and embedded devices since they may not have enough memory to perform inference with the designed large network model. To close this gap, we propose MemNet, an augment-trim learning-based neural network search framework that optimizes not only performance but also memory requirement. Specifically, it employs memory consumption based ranking score which forces an upper bound on memory consumption for navigating the search process. Experiment results show that, as compared to the state-of-the-art efficient designing methods, MemNet can find an architecture which can achieve competitive accuracy and save an average of 24.17% on the total memory needed.

5 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...presented a seminal work where they introduce the Reinforcement Learning (RL) for NAS [36]....

    [...]

  • ...This has drawn researchers’ attention to Neural Architecture Search (NAS), which involves techniques to construct neural networks without the need for profound domain knowledge [22, 26, 1, 36, 37]....

    [...]

  • ...Therefore, most of the cloud and desktop-based works focus on optimizing the speed of the search process and the accuracy of neural networks [22, 26, 1, 36, 37, 30, 5, 25, 30, 14, 29]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]